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Voorwoord

Dit proefschrift bevat de meest tastbare resultaten van ruim vier jaar promotie-
onderzoek, dat is verricht bij de vakgroep Operationele Methoden en Systeemtheorie
(OMST) van de faculteit Technologie & Management (T&M) aan de Universiteit
Twente (UT). Zoals de titel van het proefschrift reeds doet vermoeden, heeft mijn
onderzoek zich toegespitst op de mogelijke interacties tussen onderhoud en produktie
(meet = ontmoeten), en heb ik daarbinnen vooral de rol van de onderhoudsfunctie
belicht (meet = tegemoet komen). Met behulp van een tweetal veelgebruikte termen
uit het vakgebied (up = hij doet het, down = hij doet het niet), geeft de subtitel
vervolgens aan dat de verstandhouding tussen onderhoud en produktie in de praktijk
nog regelmatig te wensen over laat.

Vele mensen hebben op één of andere wijze een bijdrage geleverd aan de tot-
standkoming van dit proefschrift. Ik wil met name mijn promotor Aart van Harten
bedanken voor de vele uren die hij aan het kritisch lezen van mijn hersenspinsels heeft
besteed, en de vaak nuttige suggesties die daaruit voortvloeiden. Ook aan alle overige
collega’s van de vakgroep OMST, de faculteit T&M en mijn tijdelijke werkgever KLM
ben ik dank verschuldigd. Hun aanwezigheid heeft mij de afgelopen jaren doorgaans
met plezier naar mijn werk doen gaan. Evenzeer wil ik familie, vrienden en kennis-
sen bedanken voor de soms zichtbare, maar veelal onzichtbare steun die zij hebben
geleverd. Tenslotte is een woord van dank aan spelers en begeleiders van de voet-
balverenigingen Drienerlo en Sparta op zijn plaats, omdat ze niet zelden de ideale
uitlaatklep bleken te zijn voor tijdens het werk opgedane frustaties.

Terug- en vooruitblikkend besef ik als geen ander dat er maar weinigen zijn die
dit proefschrift van kop tot staart zullen danwel kunnen doorspitten. Dat wil echter
nog niet zeggen dat al mijn inspanningen voor niets zijn geweest. Binnen afzien-
bare tijd zal vrijwel het gehele proefschrift in één of andere vorm als wetenschap-
pelijke publicatie in de vakliteratuur zijn verschenen, en zijn de resultaten ervan in
principe dus voor iedereen toegangelijk. Nog belangrijker echter is dat ik mijzelf in
de afgelopen jaren regelmatig ben tegengekomen, en als gevolg daarvan over meer

zelfkennis beschik dan ooit tevoren. Spookverhalen als zou promoveren je vier jaar
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van je leven kosten, en je geen steek verder brengen in het bedrijfsleven, zijn wat mij
betreft dan ook volkomen uit de lucht gegrepen.

Het zal menigeen dan ook nauwelijks verbazen dat ik de academische wereld voor-
lopig vaarwel zal zeggen. Hoewel ik met een tevreden gevoel terugkijk op een vrucht-
bare combinatie van ruim viereneenhalf jaar onderwijs en onderzoek, ben ik ervan
overtuigd over een aantal jaren spijt te zullen krijgen als ik niet nu de stap naar het
bedrijfsleven maak. Een kijkje in de keuken van zowel de toegepaste wiskunde als
de technische bedrijfskunde, hebben mij tot de conclusie doen komen dat juist op de
raakvlakken van deze vakgebieden nog veel interessant werk te doen is. Desalniet-
temin spreek ik de hoop uit nog voldoende tijd te kunnen vrij maken om zo nu en

dan, en bij voorkeur met wat oude collega’s, een artikeltje in elkaar te knutselen.

Gerhard van Dijkhuizen Enschede, oktober 1998
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Chapter 1

Introduction

The British Standards Institute defines maintenance as the combination of
all technical and associated administrative actions intended to retain an item
in, or restore it to, a state in which it can perform its required function. In pro-
duction systems, the objective of maintenance is to ensure that the underlying
equipment performs regularly and efficiently, by reducing the possibilities of
breakdowns or failures, and by minimizing the production loss resulting from
them. Simply stated, maintenance management attempts to maximize the per-
formance of a production system, while keeping overall maintenance efforts in
terms of the associated time and/or costs at an acceptable level. Although this
statement sounds relatively simple, maintenance management addresses a rich
and complex problem area. Therefore, let us start with an impression of the
sources of complexity associated with maintenance management, and discuss

the contributions of our work to existing literature.

1.1 Scope of this thesis

Unfortunately, almost all production systems in our society are subject to random fail-
ure of one or more of their components. In general, these failures may severely affect
the performance and profitability of such systems, since they often occur at inconve-
nient times, and usually involve high recovery and consequential costs. Nowadays, it
is widely recognized that the influence of failures on system performance is not just
to be taken for granted. More than ever, manufacturing industries have realized that
there is a hugh potential of efficiency improvements, if the number of component
failures could be reduced and/or components could be repaired or replaced before
they fail. In the past few decades, this has given rise to an increased effort to intro-

duce technological innovations (e.g. design for reliability, design for maintainability),
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and better preventive maintenance concepts in practice as well. At the same time,
a growing interest can be observed in theoretical literature concerning the modelling
and optimization of maintenance and reliability in failure prone systems.

Traditionally, production and operations managers have rarely viewed the mainte-
nance function as a competitive factor in their firm’s business strategies. Nowadays,
as many industries are moving towards just-in-time production, and at the same
time rely on highly mechanized and automated production systems and processes,
the strategic importance of maintenance is widely recognized. More than ever, main-
tenance is being considered as a basis factor to satisfy production needs, rather than
a necessary evil. Therefore, it should be managed together with production on an
equal basis, with an open eye for their interactions. Nevertheless, maintenance in-
terventions are still too often considered as constraints on production planning and
scheduling, or the other way around. Ideally, however, maintenance jobs should be
treated as capacity-consuming production jobs, to be scheduled on resources of limited
capacities. In this respect, there is a perspective of significant gains if maintenance
and production activities are considered simultaneously, not only in an operational
planning phase, but also at a tactical and strategical level.

Strategic maintenance planning is concerned with decisions that are aimed at
keeping a company succesful on a long term basis. Typical examples are decisions
whether or not to replace or upgrade certain production equipment, whether or not
to outsource several maintenance activities, etcetera. Tactical maintenance planning
is concerned with medium term decision making, and its primary objective is to
ensure the effective and efficient use of production equipment and/or spare parts
to assure a specified performance level. Finally, operational maintenance planning
is concerned with priority setting, coordination and execution of preventive and/or
corrective maintenance activities, as well as possible interactions with production
scheduling. Complicating factors in this respect are the limited time that is usually
available for maintenance activities in view of production needs, and the uncertainties
with respect to the occurence of, and the time required for these activities.

This thesis is another contribution to the further development of mathematical
models for maintenance optimization at a tactical level, which systematically and
explicitly take into account interactions with production in several dimensions. More

specifically, our overall research objective can be stated as follows:

to develop mathematical models which can assist in the optimization
of maintenance policies for complex systems, thereby taking into
account interactions with production in terms of technical process

reliability, system availability, and minimization of costs.
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Basically, the objective of mathematical models for maintenance management
is to provide a quantitative assessment of both maintenance costs and benefits, in
order to arrive at an optimal balance between the two. In this respect, a clear
distinction must be made between preventive maintenance (before failure), predictive
maintenance (just before failure), and corrective maintenance (upon or after failure).
In general, predictive maintenance strategies rely on a deeper understanding of failure
causes,and require a so-called failure indicator as well (e.g. crack growth, vibration
analysis, thermography). In this thesis, we will restrict ourselves to preventive and

corrective maintenance strategies.

Usually, a preventive maintenance action requires less time and costs compared
with an analagous corrective maintenance action. Moreover, preventive maintenance
actions can often be planned in advance, whereas corrective maintenance actions
usually occur at inconvenient times. Apparently, there is a potential of both cost and
time reductions by conducting maintenance preventively rather than correctively.
On the other hand, too frequent preventive maintenance can be inefficient, or even
ineffective too. Simply stated, the models presented in this thesis aim at providing
maintenance management decision support in this respect. Let us now consider in

some more depth the scope of the problem areas we are going to address.

As a starting point, the complexity of a production system does not only relate
to its (potential) relations and interactions with other systems (e.g. intermediate
buffers, safety stocks, standby equipment), but also to the maintainability of the
system itself. Amongst several other factors, the maintainability of a production
system can be expressed in terms of the preparatory set-up activities that have to
be carried out, before actual maintenance actions can take place. As a consequence,
there is a perspective of significant savings if maintenance activities are carried out
simultaneously. Traditionally, maintenance optimization models have accounted for
these economies of scale, by assuming that a fixed set-up cost is incurred at each
occasion for preventive and/or corrective maintenance. In this thesis, we will present
a new, much richer and more powerful modelling framework, which allows for the
coordination of preventive maintenance activities in a multi-component production

system with multiple interrelated set-up activities.

The technical process reliability relates to the extent in which a production system
is able to perform its required function. Obviously, this ability is strongly influenced
by the effectiveness of the underlying maintenance concept. In this respect, it is not
uncommon for preventive maintenance frequencies to be determined in advance, e.g.
by specialized maintenance engineers, or due to safety restrictions and/or legislation.

This is particularly true for highly regulated production environments, such as air-
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lines, nuclear power plants, and offshore platforms. In such cases, these superimposed
maintenance frequencies are usually, or must be treated as constraints in further
optimization techniques. In this thesis, we will focus on frequency-constrained
maintenance jobs with fixed costs, as well as maintenance jobs with more general

frequency-dependent costs.

Although maintenance costs are usually expressed in terms of a long run average,
there is a strong difference between the long and short term behavior of a production
system, in view of the down times due to maintenance. In literature, this difference
has been recognized and incorporated by making a clear distinction between the
limiting availability, and the interval availability distribution of a production
system. Simply stated, the limiting availability reflects the average performance of
a production system over an infinite period of time, whereas the interval availability
distribution refers to its actual performance during a finite time interval. In general,
it depends on the type of production environment whether the limiting availability
or the interval availability is the most appropriate performance measure to be used.
Nevertheless, the impact of preventive maintenance on both performance measures is
obvious, but the latter is not so well explored in existing literature. It will be studied

thoroughly further on in this thesis.

Another important aspect concerning the availability of a production system,
is whether and to which extent the down times associated with preventive and/or
corrective maintenance involve production losses. If this effect is strong, as is the case
with so-called bottleneck machines, the consequential costs of maintenance are usually
significantly larger. In general, corrective maintenance requires an interruption of
the production process, whereas preventive maintenance can be planned at more
convenient times (e.g. between shifts, at night, or during weekends), or at so-called
maintenance opportunities (e.g. idle times, withdrawn orders, machine failures).
Since these opportunities are usually not known in advance, or at best on a short
term basis, there is a potential of both time and cost reductions if some flexibility is
build in concerning the starting time of preventive maintenance. Although this is a
widespread common sense in practice, it certainly is an underexposed point of view
in existing literature. In this thesis, we will incorporate this kind of flexibility into

some elementary maintenance models.

The other way around, it is also possible that maintenance activities, either pre-
ventive or corrective, must be carried out during predefined time intervals, or so-
called maintenance slots. Typical examples of this type can be found in airline
companies, where a given number of flights must be realized with a given number of

aircrafts, and all maintenance activities must be carried out in between these flights.
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In such cases, it must be decided how many maintenance slots of which type must
be available within the timetable, and how many maintenance engineers of which
type must be assigned to these slots, in order to facilitate maintenance complying
with the constraints set by higher management. Complicating factors in this respect
are the uncertainty associated with the occurence of corrective maintenance jobs, as
well as the variation in corresponding repair times and due dates. In this thesis, we
will present the results of a case study that was carried out at the Line Maintenance
department of KLM Royal Dutch Airlines at Schiphol Airport.

Summarizing, the main contribution of the models presented in this thesis, is
that they exploit the advantages of preventive maintenance in view of production
needs, more systematically and explicitly than in existing literature, at least up to
our knowledge. More specifically, the main problem areas addressed in this thesis

can be summarized as follows:

e the coordination of preventive maintenance activities in a multi-component pro-

duction system with multiple interrelated set—up activities,

e the influence of preventive maintenance strategies on the interval availability

distribution of an unreliable production system,

e the potential savings of building in some flexibility concerning the actual start-

ing time of preventive maintenance in an operational planning phase,

e the impact of maintenance slots in a practical context of corrective maintenance

activities with several sources of uncertainty and variation.

These problem areas, and the associated research questions, will be addressed
more thoroughly in chapters 2 to 7 respectively. In the remainder of this first chap-
ter, we will focus on clarification and specification of the various notions used in this
thesis, and a further positioning of our work within the literature. As a starting
point, section 1.2 contains a more detailed discussion of the interactions between
maintenance and production, and identifies some interesting research opportunities
as well. Subsequently, section 1.3 provides an elementary introduction into the most
fundamental aspects of maintenance management, and puts the role of maintenance
optimization models in a wider perspective. In section 1.4, a brief review on math-
ematical models for maintenance optimization is presented, and our work is related

to existing literature. Finally, section 1.5 gives an overview of this thesis.
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1.2 Maintenance meets production

It was not so long ago that price and quality were the only competitive factors, and
customer satisfaction could be ensured by maintaining large inventories of finished
products. Nowadays, rapid technological changes and smaller profit margins have
made such a strategy uneconomical, literally forcing companies to run with lower
inventory levels. Moreover, customers have changed in the sense that they expect
high quality products, quick response to orders, fast and reliable product delivery
and seamless service, all against reasonable costs. Under this increasing pressure,
manufacturing firms are being forced to improve continuously in several dimensions,
of which the most fundamental are unit cost efficiency, product quality, and timeliness
of delivery (Hopp and Spearman 1996).

Although these dimensions are broadly applicable to a lot of manufacturing in-
dustries, their relative importance varies from one firm to another. For example,
a manufacturer of a commodity (e.g. sugar, coffee) depends critically on efficiency,
since low cost is a condition for survival. On the other hand, a manufacturer of pre-
mium goods (e.g. automobiles, watches) mainly relies on quality to retain its market.
Finally, a manufacturer of high-tech products (e.g. computers, televisions) requires
speed of introduction in order to be competitive, and to maximally exploit potential
profits within the limited economic lifecycle of its products. Clearly, maintenance
management plays an important role in each of these industries, and in each of the

above-mentioned dimensions.

In this respect, it is not only the reliability and availability of a production system,
but also its variability that matters (see Figure 1.1). In literature, the reliability of a
production system is often expressed in terms of the probability that the system will
operate satisfactorily (i.e. without failures) for at least a certain period of time. In a
similar way, the availability of a production system is usually defined as the proba-
bility that the system will be operating satisfactorily at an arbitrary point in time, or
equivalently as the long run average fraction of time that the system is operational.
Finally, the variability or predictability of a production system reflects its ability
to produce at a more or less constant rate, and it is often expressed in terms of an
interval availability distribution. In this thesis, we will mainly be concerned with the
availability (long term behavior) and variability (short term behavior) of unreliable
production systems. But first, let us discuss in some more detail the potential ben-
efits of maintenance management in each of the above-mentioned dimensions: unit

cost efficiency, product quality, and timeliness of delivery.
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Figure 1.1: Maintenance as a contributive factor to logistic performance.

1.2.1 Unit cost efficiency

Efficient utilization of the available resources (e.g. labour, material, equipment) has
always been essential in view of keeping operating costs at a competitive level. From
the customer standpoint, it is unit cost (total costs divided by total volume) that
matters, implying that bost cost reduction and volume enhancement are commercially
worthy objectives. In this respect, it is not only the frequency, but also the timing of
maintenance that matters. In general, preventive maintenance involves lower cost and
less time compared with corrective maintenance. Moreover, preventive maintenance
can be carried out at more convenient times (e.g. at night, in weekends, during
holidays), or at so-called maintenance opportunities (e.g. idle times, machine failures,
withdrawn orders), whereas corrective maintenance usually requires interruption of
the production process. Simply stated, these advantages of preventive maintenance
provide the rationale for the models presented in this thesis.

By replacing or revising components before they fail, production systems might
be prevented from suddenly breaking down, thereby avoiding high corrective main-
tenance costs, and long and expensive down times. This effect is even stronger if

mutual dependencies between components are taken into account. In some cases, the
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failure of a component may increase the failure rate of other components (functional
dependence), or require the replacement of non-failed components as well (structural
dependence). Moreover, preventive maintenance on different components can often
be grouped into maintenance packages to reduce set-up times and/or costs (economic
dependence), whereas this is somewhat more complicated in case of corrective main-
tenance. In this thesis, we will restrict ourselves to economic dependencies between
components.

In view of efficiency, another advantage of preventive maintenance is that it allows
for the reduction or elimination of intermediate buffers and safety stocks, that are
usually maintained to keep production going if one or more machines have failed. In a
similar way, the number of spare parts held in stock can often be reduced significantly,
since the majority of repairs and replacements can be planned in advance. Apparently,
there is a perspective of significant savings in inventory holding costs, if maintenance
is carried out preventively rather than correctively. In this thesis, such considerations
will be left out of consideration. Nevertheless, they could be incorporated implicitly

in some of our models.

1.2.2 Product quality

The past few decades have brought widespread recognition that quality is also a
key competitive weapon. Although external or product quality has always been a
concern in manufacturing industries, the quality revolution of the 1980’s served to
focus attention on internal or process quality at each step in the production process,
and its relationship to customer satisfaction. Facets of operations management, such
as statistical process control, have loomed largely in this context as components
of Total Quality Management (Hakes 1991). Since the degree to which a product
conforms to its technical specifications is strongly related to the capabilities of the
underlying production equipment, the contribution of maintenance to both product
and process quality is nowadays widely recognized. These interactions, however, will
not be explicitly addressed in this thesis.

1.2.3 Timeliness of delivery

While cost and quality remained cricitical as always, the 1990’s have become the
decade of speed. Rapid development of new products, coupled with fast and on-
time delivery, are the pillars of manufacturing strategies adopted in many different
industries. Responsive delivery, without inefficient excess inventory, requires short
cycle times, reliable processes, and effective integration of disparate functions (e.g.
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maintenance and production). In this respect, there is a perspective of significant
improvements in system efficiency, if the variabilities in the production processes can
be reduced. In many plants, unscheduled downtimes due to random breakdowns are
one of the largest, and most disruptive sources of variability.

Ideally, a production system should be able to produce at a more or less constant
rate (i.e. without service interruptions), while retaining a satisfactory production
capacity in the long run. Therefore, a production system with frequent, predictable
and short interruptions is to be preferred above one with infrequent, unpredictable
and long interruptions, all other things being equal. In many practical situations,
and in most capacity planning systems, it is not only the average production capacity
in the long run (limiting availability), but also the guaranteed production capacity
during a finite period of time (interval availability) that matters. This is a potentially
valuable insight, since in practice the variability of a production system may be
reduced by conducting preventive maintenance at regular intervals. Therefore, it will
be studied thoroughly in this thesis.

1.3 Maintenance management

In the past few decades, production and operations managers have been confronted
with a variety of innovative and revolutionary concepts, among which some of the
most famous are MRP (Manufacturing Resource Planning), JIT (Just In Time), and
OPT (Optimized Production Technology). Although each of them has undoubtedly
provided useful insights, nowadays manufacturing systems are facing problems which
are far too complicated to be tackled by buzzword management. Effective managers
of the future will have to rely on a solid understanding of their systems, in order to
identify opportunities for improvement (Hopp and Spearman, 1996). In the current
competitive environment of short lead times and on-time deliveries, this means that
maintenance management plays a key strategic role in the optimization of business

processes.

1.3.1 Historical perspective

It was not so long ago, however, that maintenance was simply regarded as an unavoid-
able and unpredictable part of production. There was no department responsible for
the maintenance function, and the majority of maintenance activities was of a cor-
rective nature. As a consequence, there was a lot of uncertainty with respect to
the production process due to random breakdowns, causing completion times and
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product quality to be highly unreliable. In this respect, a revolutionary change in
the maintenance function was bound to happen, and maintenance finally became the
responsibility of a special department. About three degades ago, companies began to
realize that engineering qualities alone were no longer sufficient for supervising the
maintenance department, and maintenance management was born. Today, mainte-
nance management is far more important than it has ever been before.

Historically, the typical size of the maintenance department in a manufacturing
organization ranged from 5 to 10 percent of the operating force. Today, the propor-
tional size of the maintenance effort compared to the production effort (including
outsourcing) has increased, and is projected to increase even further. This tendency
is caused by the ongoing transformation of labour-intensive into capital-intensive
plants, viz. the mechanization and automation of production processes. This trend
has decreased the need for operators, and at the same time resulted in a greater
demand for technicians, electricians, and other service people. In e.g. refineries, it
is not uncommon that the maintenance department represents about 30 percent of
total manpower, and overall maintenance costs are the largest part of the operational
budget.

Nowadays, it is often found cost-effective to leave the day-to-day or routine main-
tenance activities (e.g. lubrication, cleaning, monitoring) in the hands of machine
operators, since they often know best when their equipment exhibits abnormal be-
havior. By adopting a so-called Total Productive Maintenance (TPM) philosophy, the
size and workload of the maintenance department may well be reduced significantly,
while at the same time significant improvements can be achieved in overall system
effectiveness (Nakajima 1988). In this thesis, however, we will restrict ourselves to

operational rather than organizational aspects of maintenance management.

1.3.2 Maintenance concept

Although many steps can be undertaken to maintain or improve the performance of a
production system, only a few of them are normally considered to be the responsibility
of the maintenance department. The most fundamental decision problems that are

faced by maintenance management are:

e which items are to be maintained?
e what kind of maintenance must be conducted?

e when should these activities take place?
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Figure 1.2: Maintenance initiators, activities, and packages: an overall perspective.

In general, these decisions are expressed in terms of an overall maintenance con-
cept, prescribing which maintenance activities must be carried out at which times, and
under which conditions (Gits 1984). In view of such a maintenance concept, a clear
distinction is usually made between maintenance initiators, maintenance activities,
and maintenance packages (see Figure 1.2). Within safety and legislative restrictions,
a maintenance concept should be based upon an overall attempt to minimize both
direct maintenance costs (e.g. labour, materials), and indirect maintenance costs
(e.g. production loss, deterioration costs). In practice, estimation of indirect main-
tenance costs is usually very difficult. Nevertheless, they are often much larger than
direct maintenance costs (Pintelon and Gelders 1992). In this thesis, we will account
for both direct and indirect maintenance costs in formulating optimal maintenance

strategies for unreliable production systems.

1.3.3 Maintenance initiators

As a starting point, there has to be some kind of control mechanism with which
the need for maintenance is initiated. In practice, a categorization is usually made

into preventive maintenance (before failure), predictive maintenance (just before fail-
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ure), and corrective maintenance (upon or after failure). More specifically, the most

commonly applied maintenance initiators are:

e time-based maintenance,

e use-based maintenance,

e condition-based maintenance,

e opportunity-based maintenance,

e failure-based maintenance.

Preventive maintenance is planned and performed before failure, and is either
time-based (e.g. on a weekly basis), use-based (e.g. based on running hours), or
a combination of both. Predictive maintenance aims at the initiation of preventive
maintenance just before failure, and is mostly condition-based (e.g. if too much
vibration is observed). Finally, corrective maintenance is performed upon or after
failure, and is either opportunity-based (not urgent) or failure-based (urgent). Since
condition-based maintenance usually requires a deeper understanding of failure causes
and predictors (e.g. crack growth, vibration analysis, thermography) of the produc-
tion equipment under consideration, we will mainly restrict ourselves to time-based,

use-based, opportunity-based and failure-based maintenance strategies in this thesis.

1.3.4 Maintenance activitities

Excluding the influence of technological improvements in equipment design and layout
(e.g. modifications), discussion of which is not appropriate throughout this thesis,

the most basic maintenance activities can be classified as follows:

e inspection,

e serviceing,

e reconditioning,
e repair,

e replacement.
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As a starting point, most items will be inspected regularly, in order to detect
any signs of reduced effectiveness and/or impending failure. Additionally, items will
normally be serviced at regular intervals (e.g. readjusted, lubricated, cleaned) in
order to ensure continued effective operation in the future. Moreover, reconditioning
activities will often be carried out in order to sustain satisfactory operation of items
or equipment before they fail. Upon failure, repairs will normally be required to
restore the equipment into satisfactory operation. Finally, replacement of items and
equipment will occur when they are no longer capable of proper functioning, or are
beyond economic repair.

1.3.5 Maintenance packages

Since maintenance activities often require one or more preparatory set-up activities
(e.g. crew travelling, equipment rental, dismantling), there is a perspective of signifi-
cant gains if they can be carried out simultaneously (maintenance grouping). In this
respect, we must at least distinguish between the following grouping possibilities:

e static grouping,
e dynamic grouping,
e opportunistic grouping.

In the long term, planned preventive maintenance activities are usually com-
bined into so-called preventive maintenance packages, each of which is treated as
a single maintenance activity in an operational planning phase (static grouping).
In the medium term, planned preventive maintenance activities can be combined
with each other, and with plannable corrective maintenance activities as well (dy-
namic grouping). In the short term, unplanned corrective maintenance activities can
be combined with planned preventive and/or corrective maintenance activities (op-
portunistic grouping). Although each grouping strategy takes place at a different
planning level, their mutual objective is to improve efficiency in terms of reducing
set-up times and costs in an operational planning phase. In this thesis, we will mainly

restrict ourselves to opportunities for static grouping.

1.4 Maintenance modelling

Simply stated, the overall objective of maintenance optimization models at a tactical

planning level, is to determine the frequency and timing of preventive maintenance
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activities, in order to arrive at an optimal balance between the costs and benefits of
preventive and corrective maintenance. In this respect, it is not only direct mainte-
nance costs (e.g. salaries, spare parts, tools), but also indirect maintenance costs (e.g.
poor quality, delay penalties, safety stocks) that counts. In practice, estimation of
indirect maintenance costs may be very difficult. Nevertheless, they are often much
larger than direct maintenance costs (Pintelon et al. 1997).

Without loss of generality, and in order to simplify our discussion of existing
models, we will assume that a production system is always inspected before it is
maintained preventively. By doing this, it is the main responsibility of the main-
tenance department to determine for each system (i) what to inspect, (ii) when to
inspect, (iii) when to maintain, and (iv) how to maintain. Traditionally, the majority
of maintenance optimization models has been concentrating on the second and third
problem areas, whereas the remaining decisions are usually left to specialized main-
tenance engineers. In other words, the problem areas that are usually addressed by

maintenance optimization models can be stated as follows:
e when should we inspect the system?
e on the basis of these inspection results, when should we maintain the system?

As a starting point, a clear distinction must be made between mathematical mod-
els for single unit systems, and mathematical models for multiple unit systems, since
the latter implies the existence of economies of scale in conducting maintenance ac-
tivities simultaneously. Within each of these classes, it is in our view essential to
distinguish between three fundamental types of maintenance optimization models, as
will be stated more explicitly in the following sections.

1.4.1 Single unit systems without economic dependence

The general philosophy of most maintenance optimization models for single unit
systems, is to decide at each feasible moment whether it is cost-effective to carry out
preventive maintenance now, or to postpone it to the next feasible moment, e.g. see
Berg (1980) and Frenk et al. (1997). As a consequence, the main differences between
these models originate from their interpretation of feasible moments, or equivalently
the mechanism with which preventive maintenance is, or can be activated. In this
respect, a clear distinction must be made between continuous review models, periodic
review models, and opportunistic review models. The reader is referred to McCall
(1965), Pierskalla and Voelker (1976), Sherif and Smith (1981), and Valdez-Flores and

Feldman (1989) for a more comprehensive review on existing literature. Here, we will



1.4. MAINTENANCE MODELLING 15

only mention some important references, and discuss the scientific contributions of

this thesis in some more detail.

Continuous review models

In continuous review models, it is assumed that the condition of the system can be
monitored continuously. As a consequence, preventive maintenance is usually of a
predictive, condition-based nature. According to Niebel (1994), there are five basic
techniques typically used in condition monitoring: vibration monitoring, process pa-
rameter monitoring, thermography, tribology and visual inspection. Continuous mon-
itoring of those parameters that allow the accurate prediction of failure will permit
precise scheduling of repairs without the costs of emergency downtime. Mathematical
models in this area derive their value from finding the parameters, and corresponding
treshold values, with which the occurence of failures can be predicted accurately. The
reader is referred to e.g. Barron (1996) for an introduction into the practice, methods

and applications of condition monitoring techniques.

Periodic review models

In periodic review models, it is assumed that the condition of the system cannot be
monitored continuously, as is the case in continuous review models, but only through
periodic inspection at fixed costs. In these models, inspections are usually carried
out at regular intervals, and are either time-based or use-based. In general, use-based
maintenance policies outperform time-based maintenance policies in view of efficiency.
On the other hand, time-based maintenance policies do have the advantage that one
does not have to keep track of individual component ages, as a result of which they
can easily be implemented and executed in a practical context. Mathematical models
in this area are usually concerned with finding the optimal maintenance interval,
either time-based or use-based, in order to arrive at an optimal balance between the
costs of preventive and corrective maintenance. Well-known maintenance models of
the use-based type are the age replacement and minimal repair model (Barlow and
Hunter 1960). Classical examples of time-based maintenance models are the block
replacement model (Barlow and Proschan 1965), the modified block replacement
model (Berg and Epstein 1976), the standard inspection model (Barlow et al. 1963),
and the delay time model (Christer 1982).
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Opportunistic review models

In opportunistic review models, it is assumed that inspections cannot be carried out
at any time, as is the case in periodic review models, but only at so-called mainte-
nance opportunities. The underlying observation behind these models is that in many
practical situations, preventive maintenance on non-critical units is delayed to some
moment in time where the unit is not required for production. In general, such op-
portunities may arise due to e.g. random breakdowns and/or withdrawn production
orders. Because of the random occurence of opportunities, and because of their some-
times restricted duration, traditional maintenance models fail to make effective use
of them. Mathematical models in this area are primarily used to determine whether
a maintenance activity must be conducted at a given opportunity, or whether it must
be postponed to the next one, e.g. see Berg (1984), Dekker and Smeitink (1991), and
Dekker and Dijkstra (1992).

Contribution of this thesis

In this thesis, we will restrict ourselves to periodic and opportunistic review mod-
els. Traditionally, maintenance optimization models for single unit systems have
been focussed on minimizing the long run average times and/or costs associated with
preventive and corrective maintenance. Moreover, the initiation of preventive main-
tenance is often either time-based, or use-based, or opportunity-based, but nothing in
between. Simply stated, the models presented in this thesis generalize previous work
in the latter respect, and also by taking into account interactions with production in
terms of variability measures. In chapter 4, we study the effect of preventive main-
tenance policies on the interval availability distribution of an unreliable production
system. In chapter 5, we present a combined periodic/opportunistic review model,
in which preventive maintenance is carried out at the best opportunity during a pre-
defined interval. Although these philosophies are common sense in practice, they

certainly are an underexposed point of view in existing literature.

1.4.2 Multiple unit systems with economic dependence

The justification of most maintenance optimization models for multiple unit systems,
is a potential of reductions in set-up costs and/or times if maintenance activities are
carried out simultaneously (maintenance grouping). As we explained in the previous
section, mathematical models in this area can be categorized into static grouping,

dynamic grouping, and opportunistic grouping strategies. Although each grouping
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strategy takes place at a different planning level, their mutual objective is to improve
efficiency in terms of reducing set-up times and costs in an operational planning
phase. The reader is referred to Cho and Parlar (1991) and Dekker et al. (1997) for
an extensive and up-to-date literature review on maintenance models for multi-unit
systems with economic dependence. Here, we will restrict ourselves to some important

references. Moreover, we discuss the contributions of this thesis to existing literature.

Static grouping models

Static grouping refers to the combination of planned preventive maintenance activi-
ties in a strategical planning phase. In this respect, a clear distinction must be made
between direct and indirect grouping models. In direct grouping models, the col-
lection of preventive maintenance activities is partitioned into several maintenance
packages, each of which is executed at an interval that is optimal for that package.
In indirect grouping models, maintenance packages are not determined in advance,
but are formed indirectly whenever the maintenance of different units coincides. To
achieve this, each maintenance activity is carried out at an integer multiple of a
certain basis interval. Basically, static grouping models attempt to find the opti-
mal balance between the costs of deviating from the optimal preventive maintenance
intervals for individual units, and the benefits of combining preventive maintenance
activities on different units. Typical examples of static grouping models can be found
in e.g. Gertsbakh (1977), Goyal and Kusy (1985), Goyal and Gunasekaran (1992),
and Wildeman (1996).

Dynamic grouping models

Dynamic grouping refers to the combination of planned preventive maintenance ac-
tivities with each other, and/or with plannable corrective maintenance activities, in
a tactical planning phase. Of course, the latter is only possible if the repair of failed
units can be postponed to a more suitable moment in time, e.g. because standby
units are available, or the unit does not affect the system as a whole. The main diffi-
culty of dynamic grouping models is that the failure of a unit cannot be predicted in
advance. Therefore, dynamic grouping models often make use of a so-called rolling
horizon approach. More specifically, they use a finite horizon in order to arrive at a
sequence of decisions, but only implement the first one. Basically, mathematical mod-
els for dynamic grouping derive their value from finding an optimal balance between
the costs of postponing corrective maintenance activities, and the benefits of com-
bining them with other preventive and/or corrective maintenance activities. Typical



18 CHAPTER 1. INTRODUCTION

examples of dynamic grouping models are presented in e.g. Assaf and Shanthikumar
(1987), Ritchken and Wilson (1990), Jansen and Van der Duyn Schouten (1995), and
Wildeman et al. (1997).

Opportunistic grouping models

Opportunistic grouping refers to the combination of planned maintenance activi-
ties with unplanned maintenance activities in an operational planning phase. In
these models, the failure of a particular unit is used as an opportunity for planned
maintenance on other units. In practice, this means that opportunistic maintenance
grouping is difficult to manage, since it affects the plannable nature of preventive
maintenance. Nevertheless, if all the preparations needed for preventive maintenance
have been made in advance, it certainly is an effective method to reduce set-up
costs and times in an operational planning phase. Basically, mathematical models
for opportunistic grouping attempt to find an optimal balance between the costs of
advancing planned maintenance activities, and the benefits of combining them with
other unplanned maintenance activities. Typical examples of opportunistic grouping
models can be found in e.g. Haurie and L’Ecuyer (1982), Ozekici (1988), Van der
Duyn Schouten and Vanneste (1990), Van der Duyn Schouten and Vanneste (1993),
Dekker and Smeitink (1994), and Wijnmalen and Hontelez (1997).

Contribution of this thesis

In this thesis, we will mainly be concerned with static grouping or so-called clustering
models. Traditionally, clustering models have accounted for the economies of scale in
carrying out maintenance jobs simultaneously, by assuming that a fixed set-up cost
is incurred at each occasion for preventive and/or corrective maintenance. In this
thesis, we will present a new, much richer and more powerful modelling framework,
which allows for multiple interrelated set-up activities. In chapter 2, this framework
is applied to a direct clustering model, in which a collection of frequency-constrained
maintenance jobs must be subdivided into several frequency-constrained maintenance
packages, and our objective is to minimize preventive maintenance costs per unit
of time. In chapter 3, we consider an indirect clustering model, with more general
frequency-dependent costs instead of frequency constraints for each component. Here,
each component is maintained preventively at an integer multiple of a certain basis
interval, which is the same for all components. Our approach generalizes previous

work in the sense that considerably more degrees of freedom are taken into account.
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1.5 Overview of this thesis

Let us now briefly discuss the contents of this thesis in some more detail. In chapters
2 and 3, we present a modelling framework with which the costs and times associated
with preventive and corrective maintenance can be modelled to a proper level of de-
tail, and for a large class of production systems. The underlying observation behind
this modelling framework is that almost all production systems can be decomposed
hierarchically into a tree-like structure of set-up activities and components, in which
each component corresponds to exactly one set-up activity. In line with this, creat-
ing an occasion for preventive maintenance on one of these components requires a
collection of preparatory set-up activities to be carried out in advance, with corre-
sponding set-up times and/or costs. Since different components may require one or
more identical or shared set-up activities, there is a perspective of significant gains
if preventive maintenance activities are carried out simultaneously. By assuming an
additive cost structure, the opportunities for static grouping are further exploited in
chapters 2 and 3 respectively. These chapters are partially based on ideas that were
first presented in Van Dijkhuizen (1995).

Chapter 2 considers a direct clustering problem for a multi-setup and multi-
component production system with frequency-constrained preventive maintenance
jobs, which must be carried out with prescribed or higher frequencies. This approach
is particularly useful if these frequencies are restricted by law (e.g. aircraft main-
tenance), or historical data are simply not available (e.g. new equipment). Our
objective in this chapter is to find a partitioning of preventive maintenance jobs into
preventive maintenance packages, in such a way that overall preventive maintenance
costs per unit of time are minimized. To this end, a clear distinction is made between
production systems with a single set-up activity (common set-ups), and production
systems with multiple set-up activities (shared set-ups), since the former requires
much simpler solution techniques than the latter. A preliminary version of this chap-
ter has been published in Van Dijkhuizen and Van Harten (1997a).

In chapter 3, our modelling framework is further developed into an indirect group-
ing problem, in which each component is maintained preventively at integer multi-
ples of a certain basis interval, and corrective maintenance is carried out in between
whenever necessary. Within this setting, our objective is to determine a repetitive
maintenance cycle which minimizes the average maintenance costs per unit of time
in the long run. To this end, detailed information about the failure behavior of each
component is assumed to be available. More specifically, the frequency constraints of
chapter 2 are replaced with frequency-dependent costs for each maintenance job. Our
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approach generalizes previous work in the sense that it allows for multiple interrelated
set-up activities and components, and that considerably more degrees of freedom are
taken into account. The majority of this chapter is based on results presented in Van
Dijkhuizen and Van Harten (1997b).

Chapter 4 is concerned with the interval availability distribution of an unreliable
production system, which is maintained preventively at regular intervals, and correc-
tively upon failure. Within this setting, it is examined whether, and to which extent,
optimal preventive maintenance policies would change if the guaranteed performance
of a production system during a finite period of time (interval availability) would
be preferred above its average performance in the long run (limiting availability).
A general modelling framework is presented which allows for stochastic preventive
and corrective maintenance times. In addition, explicit formulas are derived for a
production system with deterministic preventive maintenance times, and Gamma-
distributed corrective maintenance times. Computational results indicate that fre-
quent and short service interruptions are to be preferred above infrequent and long
ones, all other things being equal. The results of this chapter are primarily based on
Van Dijkhuizen and Van der Heijden (1998).

Chapter 5 is concerned with the potential benefits of building in some flexibility
concerning the starting time of preventive maintenance. The underlying observation
behind this approach is that the initiation of preventive maintenance should be based
on the technical state as well as the operating state of a production system, and that
the latter is often subject to fluctuations in time. Although this is a widespread
common sense in practice, it certainly is an underexposed point of view in existing
literature. Therefore, a two-stage maintenance policy is considered, which - in a first
stage - uses the technical state of the production system to determine a finite interval
during which preventive maintenance must be carried out, and - in a second stage -
uses the operating state of the production system to determine the optimal starting
time within that interval. Computational results indicate that significant savings can
be obtained in comparison with classical maintenance policies. These chapters have
been published in adapted form in Van Dijkhuizen and Van Harten (1998a) and Van
Dijkhuizen and Van Harten (1998b).

In chapter 6, we will present the results of a case study that was carried out at
the Line Maintenance department of KLM Royal Dutch Airlines. This department
is responsible for the inspection, maintenance and repair of aircrafts during their
stay at Schiphol Airport, as well as the assignment of aircrafts to flights in KLM’s
timetable. A decision support system has been developed which should eventually

assist maintenance managers in determining how many maintenance slots of which
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type should be available in the timetable, and how many maintenance engineers of
which type should be assigned to these slots. This chapter is partially based on ideas
presented in Van Dijkhuizen (1997).

Finally, chapter 7 summarizes the ideas and models presented in this thesis,
and clears the way towards a decision support system for coordinated planning and
scheduling of production and maintenance. We conclude that preventive maintenance
frequencies should be determined in a strategical planning phase, whereas tactical and
operational decision making should be supported with relatively simple, and rather
straightforward control mechanisms. Therefore, a clear distinction is made between
long term, medium term, and short term maintenance planning. To conclude this the-
sis, we briefly discuss these control mechanisms at each planning level, in view of the
possible interactions with production, and indicate several interesting opportunities
for further research as well.
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Chapter 2

Optimal clustering of
frequency-constrained maintenance jobs

with shared set-ups

Since maintenance jobs often require either one, or a collection of prepara-
tory set-up activities, joint execution or clustering of maintenance jobs is often
seen as a powerful instrument to reduce shut-down costs. In this chapter, we
consider a clustering problem for frequency-constrained maintenance jobs, i.e.
maintenance jobs that must be carried out with prescribed (or higher) frequen-
cies. As a starting point, several strong dominance rules are provided for the
clustering of maintenance jobs with identical, so-called common set-ups. Sub-
sequently, these dominance rules are used in an efficient dynamic programming
algorithm, which solves this problem in polynomial time. For the clustering
of maintenance jobs with partially identical, so-called shared set-ups, similar
but less strong dominance rules are derived. Nevertheless, a dynamic program-
ming algorithm and a mixed integer linear program, as well as two surprisingly

well-performing heuristics, can be formulated to solve this problem.

2.1 Introduction

Many preventive maintenance jobs (inspections, replacements) of production systems
require shut-down of the units involved. If these units are used continuously, as is
the case in process industry, shut-downs can be very costly and management will try
to minimize their duration and frequency. Since maintenance jobs often share one
or more preparatory set-up activities and/or costs (e.g. crew travelling, dismantling,
equipment rental, carry in at a repair facility), there is a perspective of significant
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gains if they can be carried out simultaneously (maintenance grouping). In the past
few decades, a growing interest can be observed in the modelling and optimization of
preventive and corrective maintenance planning, where correlation between various
jobs is essential in view of set-up avoidance. Most of these models derive their value
from the economies of scale in carrying out maintenance jobs simultaneously, e.g.
see Cho and Parlar (1991) and Dekker et al. (1997) for an extensive and up-to-date
review of existing literature. Here, we will only mention some important references.
As in the previous chapter, we make a clear distinction between static, dynamic and
opportunistic grouping models.

First of all, static grouping refers to the coordination of planned preventive main-
tenance jobs in a strategical planning phase, e.g. see Gertsbakh (1977), Goyal and
Kusy (1985), Goyal and Gunasekaran (1992), and Wildeman (1996). In a simi-
lar way, dynamic grouping models aim at the simultaneous execution of planned
preventive maintenance jobs and plannable corrective maintenance jobs in a tacti-
cal planning phase, e.g. see Assaf and Shanthikumar (1987), Ritchken and Wilson
(1990), Jansen and Van der Duyn Schouten (1995), and Wildeman, Dekker, and Smit
(1997). Finally, opportunistic grouping comes down to the combination of planned
with unplanned maintenance jobs in an operational planning phase, e.g. see Haurie
and L’Ecuyer (1982), Ozekici (1988), Van der Duyn Schouten and Vanneste (1990),
Van der Duyn Schouten and Vanneste (1993), Dekker and Smeitink (1994), and Wijn-
malen and Hontelez (1997). Basically, the objective of maintenance grouping models
is to find an optimal balance between the costs of deviating from the optimal interval
for individual maintenance jobs, and the benefits in terms of set-up avoidance by
combining maintenance jobs. In this chapter, we will focus on static grouping, or
long term clustering possibilities for preventive maintenance jobs.

In this respect, a clear distinction must be made between direct and indirect
clustering techniques. In direct clustering models, the collection of preventive main-
tenance activities is partitioned into several maintenance packages, each of which
is executed at an interval that is optimal for that package. In indirect clustering
models, these maintenance packages are not determined in advance, but are formed
indirectly whenever the occurence of different maintenance jobs coincides. To achieve
this, each maintenance job is carried out at an integer multiple of a certain basis in-
terval. In general, indirect clustering techniques always outperform direct clustering
techniques, at least from a cost efficiency point of view (Van Eijs, Heuts, and Kleinen
1992). Nevertheless, there may be some other e.g. administrative reasons which em-
phasize on the use of predefined maintenance packages. In this chapter, we will focus

on direct clustering techniques.
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From a theoretical point of view, the clustering problem can be formulated as a
classical set-partitioning problem, and as such is N'P-hard (Garey and Johnson 1979).
Consequently, an optimal clustering can be found for only a relatively small number of
maintenance jobs, unless a very special structure is assumed. An example of this type
is presented in this chapter, where we restrict ourselves to frequency-constrained
maintenance jobs. More specifically, we consider maintenance jobs that must be
carried out at fixed intervals with prescribed or higher frequencies (e.g. at least
once per month). Although it is very well possible that these so-called limitative
frequencies are determined with the use of mathematical models, they might also be
based on expert opinions, safety restrictions and/or legislation. In general, the use of
frequency constraints requires no explicit data on failure statistics whatsoever, and
therefore enables us to integrate both qualitative and quantitative decisions in one

and the same modelling framework.

Pioneering work within the field of frequency-constrained maintenance jobs was
carried out by Gits (1987), who considered a clustering problem for maintenance jobs
with identical, so-called common set-up activities. The latter implies that creating an
occasion for preventive maintenance on one or more components requires a fixed set-
up cost, irrespective of how many and which components are maintained. Although
this might be an interesting approach from a theoretical point of view, it is obvi-
ous that nowadays production systems are usually much more complicated. In our
opinion, preventive maintenance models should at least account for multiple set-up
activities and components, allowing different set-up costs for different components, or
groups of components. On the other hand, it seems virtually impossible to support
a separate, independent data structure for each possible group of components, that

could arise in the most general situation.

In order to arrive at a compromise, we developed a powerful modelling framework,
in which a variety of complex set-up structures can be modelled to a proper level of
detail. More specifically, we assume that the collection of set-up activities can be
ordered hierarchically into a tree-like structure, in which each maintenance job can
be associated with exactly one set-up activity (see Figure 2.1). Considering this
tree-like structure, it is now immediately clear that some maintenance jobs may not
share all set-up activities, but only a subset of them. Obviously, these possibilities for
shared set-up activities provide a richer and more realistic modelling framework
in comparison with the requirement of completely coinciding paths, as is the case

with common set-ups.

To a certain extent, the above-mentioned concept of shared set-up activities orig-
inates from Gertsbakh (1972), who developed a somewhat similar but less powerful
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Q set-up activities

[ ] maintenance jobs

Figure 2.1: Tree-like structure of set-up activities and maintenance jobs (example).

modelling framework, in which maintenance jobs can only be defined at the lowest-
level set-up activities. Practical examples of shared, but not common set-ups can be
found in various areas, e.g. in aircraft maintenance, maintenance of nuclear power
plants, off-shore maintenance, and even tramcar maintenance (see Figure 2.2). Sum-
marizing, the notion of shared but not common set-up activities seems to be a com-
mon sense in practice, but at the same time an underexposed point of view in existing

literature.

The outline of this chapter is as follows. In section 2.2, a mathematical formula-
tion of the clustering problem is given, and the complexity of this problem is briefly
discussed. In section 2.3, the clustering problem with common set-ups is considered.
Several dominance rules are provided, and an efficient dynamic programming algo-
rithm is developed, which solves this problem in polynomial time. In section 2.4,
the clustering problem with shared set-ups is considered, and similar but less strong
dominance rules are derived. Nevertheless, a dynamic programming algorithm and a
mixed integer linear program can be formulated, with which this clustering problem
can also be solved to optimality. Subsequently, two efficient heuristics are presented
in section 2.5, and their absolute as well as relative performance is further investi-
gated in section 2.6. Finally, some conclusions are summarized in section 2.7, and

several possibilities for further research are discussed.
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A : Tramcar

B : Truck Assembly
C : Motor 1

D : Motor 2

E
F

: Motor 1 Housing
: Motor 2 Housing

c D
1,5 : Armature

2,6 : Roller Bearing
3,7 : Field Coil

4,8 : Interpole Coil
9: Truck

1 2 3 4 5 6 7 8 9 10 10 : Body

Removing and fitting body to truck assembly 120
Removing and fitting motors to truck 300
Opening motor and removing armature plus reassembling 50
Dismantling motor housing and removing interpole and field coils plus reassembling 50
Reconditioning armature 900
Reconditioning field coil 120
Reconditioning interpole coil 100
New roller bearing 350
Major truck overhaul 5000
Minor truck overhaul 1900
Body overhaul and painting 3000

Figure 2.2: Multiple interrelated set-up and maintenance activities with associated

costs for a tramcar (Sculli and Suraweera 1979).

2.2 General approach

In this section, the underlying assumptions of our modelling framework are stated
more explicity. Furthermore, a proper problem definition and a mathematical formu-
lation of the clustering problem are given. Moreover, the complexity of this problem
in terms of the number of possible clusterings in relation to the number of mainte-

nance jobs is discussed.

2.2.1 Problem definition

As a starting point, we assume that fixed costs are incurred for each set-up activity,

and for each maintenance job. In general, these costs can be categorized into direct
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maintenance costs (e.g. salaries, tools, materials), and indirect maintenance costs
(e.g. production loss, delay penalties). Given a limitative frequency or frequency
constraint for each maintenance job, the clustering problem is now concerned with the
partitioning (clustering) of maintenance jobs into maintenance packages (clusters),
in such a way that preventive maintenance costs per unit of time are minimized in
the long run. Note that the possible reductions in equipment failures and associated
corrective maintenance costs, as a positive side-effect of clustering, are not contained
in our analysis. If so, clustering of preventive maintenance jobs would become even

more profitable.

Within our modelling framework, we assume that the costs of a cluster can be
computed from the costs of the individual set-up activities and maintenance jobs,
and that the costs of a clustering can be computed from the costs of the individual
clusters. In other words, we use an overall additive cost structure, as will be stated
more explicitly in the following section. From a practical point of view, this means
that (i) parallel execution of maintenance jobs within a cluster, and (ii) simultaneous
execution of clusters within a clustering (e.g. in an operational planning phase) are
not allowed, or do not lead to cost reductions. Obviously, other assumptions would
lead to other interesting versions of the clustering problem. In fact, an illustrative

example will be presented in the following chapter.

In line with the above, the collection of set-up activities and frequency-constrained
maintenance jobs is now converted into a so-called maintenance tree. The root of
this maintenance tree corresponds to the production system in operating condition.
Moreover, maintenance jobs are represented by the leafs, and set-up activities by
the remaining nodes of the tree. As a consequence, each maintenance job can be
associated with exactly one parental set-up activity, and the communality of set-up
activities is determined by the joint part of the paths connecting the nodes to the
root of the tree (see Figure 2.3). These are the basic rules for the conversion, further

details are discussed below.

In general, this tree-like structure of set-up activities and maintenance jobs relates
to the hierarchical decomposition of a production system into its several subsystems.
This does not necessarily imply, however, that other possibilities do not exist. As an
illustrative example, consider a melting furnace which is subject to several periodic
preventive maintenance jobs. Due to safety restrictions, different maintenance jobs
require different furnace temperatures. The furnace has to be cooled down to the
required temperature before a specific maintenance job can be carried out. If we
associate a set-up activity with each of the required temperatures, then the set of

different temperatures also reflects a shared set-up structure.
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Figure 2.3: Examples of a maintenance tree with (a) common and (b) shared set-up
activities: set-up and maintenance costs are shown at the arcs, limitative frequencies

in brackets at the corresponding nodes.

2.2.2 Mathematical formulation

Consider a collection of preparatory set-up activities Z = {1,...,m} and frequency-
constrained maintenance jobs J = {1,...,n}, and let I; C 7 denote the set-up ac-
tivities ¢ € Z required for maintenance job j € J (e.g. Iy = {1,2} in Figure 2.3b).
Furthermore, define s; > 0 and ¢; > 0 as the (expected) costs associated with set-up
activity ¢ € Z resp. maintenance job j € J, and let f; > 0 denote the limitative
frequency of maintenance job j € J.

A cluster of maintenance jobs is defined as a subset U C J. Similar to the defi-
nitions above, let f(U) > 0 denote the limitative frequency, s(U) > 0 the (expected)
set-up costs and ¢(U) > 0 the (expected) maintenance costs associated with a cluster
U C J. Then the following expressions for f(U), s(U) and ¢(U) can be derived:

fU) = rjneaUij,
s(U) = Z Siy
S U Ij
Jjeu
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In a similar way, the (expected) costs per unit of time A\(U), associated with a
cluster U C J, can be defined rather straightforwardly as follows:

AU) = f(U) -{s(U) + c(U)} -

A clustering of maintenance jobs is defined as a partitioning €2 of 7. Since our
objective is to minimize the total (expected) costs per unit time, we need to determine

a clustering 0* for which the following expression is minimized:

AQ) =D AU) =D FU)-{s(U) +e(U)}.

uecQ ucQ

2.2.3 Further notation and assumptions

As a starting point, we define J; = {j € J | ¢ € I;} and J; C J; as the collection
of maintenance jobs j € J that require resp. are attached to set-up activity ¢ € 7.
Moreover, we denote with S; C Z the successors of set-up activity ¢ € Z, and with
K ={f; | 7 € J} the entire set of different limitative maintenance frequencies.
Finally, we define K; = {k € K | k > f;} and K; = [, K; as the set of feasible
maintenance frequencies for maintenance job j € J resp. set-up activity ¢ € Z. As
an illustrative example, we consider the maintenance tree of Figure 2.3b. This yields:

Iy = I, ={1,2}, Is = {1},
J1=1{1,2,3}, Jo ={1,2},
Ji=1{3} J; ={1,2},

Sy = {2}7 So = @a
K=K, =1{5,3,2}, Ky = {5,3},
K, = {5}, Ks ={5,3}, K3 ={5,3,2}.

For notational convenience, and without loss of generality, we assume that i > i
for all i € Z and " € S; in the sequel. Moreover, and in line with the above, we
assume that I; N...N I, = {1}, i.e. there exists exactly one common set-up activity
i = 1. To see this, Iy N ... N I, = () implies that the clustering problem can be
decomposed into two or more (smaller) clustering problems, which can be treated
and solved separately. In case |I; N ...N I,| = k > 1, the common set-up activities
i € {1,....,k} can as well be combined into a single common set-up activity ¢ = 1,
with corresponding set-up costs s; + ... + s > 0. For similar reasons, we can assume
that J; # @ for all ¢+ € Z, since obviously set-up activities with no components can
as well be neglected.
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Table 2.1: Total number of different clusterings A(n) for a clustering problem with
n maintenance jobs.
n 2 6 12 20 30
A(n) 2 203 4.21 - 108 5.17 - 1013 8.47-10%

2.2.4 Complexity of the clustering problem

Let us now investigate the complexity of the clustering problem, by deriving an
expression A(n) for the number of different clusterings of {1, ...,n}. To this end, define
B(n, k) as the number of different clusterings of {1, ...,n} into k clusters (1 < k < n).
Then A(n) = ), B(n,k) by definition, whereas B(n,1) = B(n,n) = 1 is almost
trivial. Moreover, B(n,k) = k- B(n — 1,k) + B(n — 1,k — 1) for 1 < k < n. Some
values of A(n) for increasing values of n are presented in Table 2.1. Apparently,
the search space of the clustering problem grows exponentially with the number of
maintenance jobs n. In the following sections, we will show that the complexity of the

clustering problem can be reduced significantly, by exploiting its special structure.

2.3 The clustering problem with common set-ups

In this section, the clustering problem for maintenance jobs with common set-ups
is considered. First, an example is given, and several strong dominance rules are
provided. With these dominance rules, an efficient dynamic programming algorithm
is developed, which solves this problem in polynomial time. In the clustering problem
with common set-ups, there is only one set-up activity (m = 1). Consequently,

s(U) = sy for all U C J, where s; > 0 represents the common set-up costs.

2.3.1 Example

Consider the clustering problem with common set-ups, as shown in Figure 2.3a. Then
the costs A\(U) for all possible clusters U C J are determined as follows:

A({1}) =5 - (50 + 50) = 500,
A({2}) = 3- (50 + 60) = 330,

A({3}) = 2- (50 + 30) = 160,
A({1,2}) = 5 (50 + 50 + 60) = 800,
A({1,3}) = 5 (50 + 50 + 30) = 650,
A({2,3}) = 3 (50 + 60 + 30) = 420,

A({1,2,3}) = 5- (50 + 50 4 60 + 30) = 950.
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In a similar way, the costs A() for all possible clusterings €2 of J are given by:

A{{1},{2},{3}}) = 500 + 330 + 160 = 990,
A({{1},{2,3}}) = 500 + 420 = 920,
A({{2},{1,3}}) = 330 + 650 = 980,
A{{3},{1,2}}) = 160 + 800 = 960,

A({{1,2,3}}) = 950.

Apparently, the optimal clustering is determined by Q* = {{1},{2,3}}, with
corresponding (minimal) costs A(Q2*) = 920.

2.3.2 Problem reduction

Let us now derive some dominance rules, with which optimal clusterings can be
characterized, and as a result of which the complexity of the clustering problem can

be reduced significantly.

Theorem 1 Consider an optimal clustering (0 and let Q); € Q0" denote the cluster

corresponding to maintenance job j € J. Then the following must be satisfied:

(1)) VikeT:f(Q;) = f(Qk) — Q= Qr,

(i) Viked:f; > fi— f(Q5) > f(Qn),

(i11) Vje T : f(Q;) < fi(s1+¢)/ey,

(iv) Vi ke T:fi=fi— Q5= Qk,

(v) VikleT: f;>h>fi N Qj=0Qr — Q5 =Q1= Q.

Proof. If Q* violates (i), then f(Q;) = f(Qx) and Q; # Qy for some j,k € J. In
that case, combination of clusters (); and @)y, results in a clustering Q with A(Q) =
A(Y) — f(Qj) - s1 < A(QF), since s; > 0 by assumption. If Q violates (ii), then
fi = fr and f(Q;) < f(Q) for some j,k € J. In that case, moving job k from
cluster Qi to @), results in a clustering Q with A(Q2) < A(Q*) — f(Qr) - e + f(Q;) -
e < A(Q), since f(Q;) > f; > fr and ¢ > 0 by assumption. If Q* violates
(iii), then f(Q;) - ¢; > fj - (s1 + ¢;) for some j € J. In that case, removing job
j from cluster (); and creating a new cluster {j} results in a clustering 2 with
A(2) < AQY) — f(Q) - ¢j + fi - (s1 +¢;) < A(2*). Finally, properties (iv) and (v)
follow directly from properties (i) and (ii). O

Let us now denote with A(n,k) the total number of different clusterings for n
maintenance jobs, which satisfy dominance rules (i) and (ii) and thus (iv) and (v) of

Theorem 1, given that there are k = |K| different maintenance frequencies. Then it is
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Table 2.2: Total number of different clusterings A(n, k) for a clustering problem

with n maintenance jobs and k£ maintenance frequencies.

n 2 6 12 20 30

k 2 3 4 5 6
A(n) 2 203 4.21-10° 5.17 - 103 8.47 - 107

A(n, k) 2 4 8 16 32

easily verified that A(n,k) = 2¥=1. Some values of A(n, k) versus A(n) for increasing
values of n and k are given in Table 2.2. Clearly, the complexity of the clustering
problem with common set-ups is reduced drastically, even if dominance rule (iii) of
Theorem 1 is left out of consideration.

2.3.3 A dynamic programming algorithm

Using dominance rule (iv) of Theorem 1, we can assume -without loss of generality-
that f; > ... > f,, since maintenance jobs with identical frequencies are always
contained in the same cluster. In other words, jobs j and k with f; = fi can as well
be replaced by a single job [ = {j} U{k} with f; = f; = fr and ¢, = ¢; + ¢x. As a
starting point of our analysis, let us now denote with fj > () the maximal frequency
of maintenance job j € J, according to dominance rule (iii) of Theorem 1:

f': \‘f‘.sl—f—CjJ

Cj

Furthermore, let g(k) denote the minimal costs for clustering the first &£ main-
tenance jobs (1 < k < n), and define ¢g(0) = 0 for notational convenience. Using
dominance rules (iii) and (v) of Theorem 1, g(k) can now be determined recursively
by means of the following dynamic programming equation:

g(k)= min {g(j—1)+f; - (s1+¢+...+cx)}.
ISk f<fr

In general, the clustering problem may have alternative optimal solutions. Never-
theless, the above-mentioned dynamic programming algorithm requires % ‘n-(n+1)
computations in the worst case (i.e. if fj > f1 for all j € J), and therefore is an
O(n?) algorithm.

2.3.4 Example (continued)

Consider the example of Figure 2.3a, for which it can easily be verified that f; =

530 = 10, fy = |3-30] = 5 and f3 = [2- 20| = 5. According to
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these maximal frequencies, none of the possible clusters can be discarded in advance.

Hence, the dynamic programming algorithm results in:

g(1) = fi-(s1+c)
5+ (50 4+ 50) = 500,

9(2) = min{fi-(s1+c1+c2),9(1)+ fa- (514 2)}
= min{5 - (50 + 50 + 60), 500 + 3 - (50 + 60)}
— min{800,830} = 800,
9(3) = min{fi-(s1+ea+ce2+c3),9(1) + fa- (s1+c2+¢3),9(2) + f5- (514 ¢3)}

min{5 - (50 4 50 + 60 -+ 30), 500 + 3 - (50 -+ 60 + 30), 800 + 2 - (50 + 30)}
min{950, 920, 960} = 920.

Hence, the optimal solution is Q* = {{1},{2,3}}, with corresponding (minimal)
costs A(£2*) = 920.

2.4 The clustering problem with shared set-ups

In this section, the clustering problem for maintenance jobs with shared set-ups is
considered. First of all, a numerical example is given, and several dominance rules are
provided. Subsequently, these dominance rules are used in a dynamic programming
algorithm, as well as a mixed integer linear programming formulation, with which
this clustering problem can be solved to optimality. To conclude this section, both

methods are illustrated by means of a numerical example.

2.4.1 Example

Consider the clustering problem with shared set-ups, as shown in Figure 2.3b. Then
the costs A(U) for all possible clusters U C J are determined as follows:

A({1}) = 5 (50 4 40 + 10) = 500,
A({2}) = 3 - (50 4 40 + 20) = 330,
A({3}) =2 (50 + 30) = 160,
A({1,2}) =5 - (50 + 40 + 10 + 20) = 600,
A({1,3}) =5 - (50 + 40 + 10 + 30) = 650,
A({2,3}) = 3+ (50 + 40 + 20 + 30) = 420,
A({1,2,3}) = 5- (50 + 40 + 10 + 20 + 30) = 750.

In a similar way, the costs A(2) for all possible clusterings €2 of J are given by:
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A({{1},{2},{3}}) = 500 + 330 + 160 = 990,
A{{1},{2,3}}) = 500 + 420 = 920,
A({{2},{1,3}}) = 330 + 650 = 930,

A3}, {1,2}}) = 160 + 600 = 760,

A({{1,2,3}}) = 750.

Apparently, the optimal clustering is determined by Q* = {{1,2,3}}, with corre-
sponding (minimal) costs A(Q*) = 750.

2.4.2 Problem reduction

As in the clustering problem with common set-ups, let us now derive some dominance
rules, with which optimal clusterings can be characterized, and as a result of which
the complexity of the clustering problem can be reduced significantly. As a starting

point of our analysis, we denote with s;; > 0 the shared set-up costs of maintenance
jobs j,k € J:

Sjk = E Si.

el;Niy,

Note that s;, > s; > 0 for all 5,k € J, since we assumed the existence of exactly
one common set-up activity ¢ = 1, with corresponding costs s; > 0. With this in
mind, Theorem 1 can now be generalized as follows. But first, we need the following

lemma.

Lemma 1 Consider an arbitrary clustering ), and let (); € €1 denote the cluster
corresponding to maintenance job j € J. Furthermore, define 61 = (sj;+¢;—5s;k)/¢;
for all j,k € J. Then 5,;.1 - f(Qr) > f(Q)) > fi for some j, k € J implies that S is
not optimal.

Proof. Suppose that f(Q;) > fi for some j,k € J. Then removing job k from
cluster @y results in a cost decrement of at least A~ = f(Qy) - ¢x. Similarly, moving
job k to cluster ); results in a cost increment of at most AT = f(Q;) - (Skx + cx — Sjk),
since f(Q;) > fx by assumption, and j € @); by definition. Since (5,;-1 f(Qr) > f(Qy)
is equivalent to A~ > AT, this completes the proof. O

It is easily verified that 6, > 1 for all j, k € J. Furthermore, 6, = 6x; = 1if sj; =

Sjk = Skj = Sgk for some j,k € J, i.e. if maintenance jobs j and k require the exact
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same set-up activities. In general terms, Lemma 1 provides optimality conditions for
the cluster frequencies {f(Q;), f(Qr)} of each pair {j,k} of maintenance jobs. It is
now possible to generalize Theorem 1.

Theorem 2 Consider an optimal clustering 0* and let Q); € Q0* denote the cluster

corresponding to maintenance job j € J. Then the following must be satisfied:

(i) Vi keJ: f(Q)=f(Qr) — Q5 = Q,

(it) VjkeT:[f;> fr— F(Q)) =6 - F(Qr),
(i4i) Vi€ T f(Qs) < fi- (s +¢i)/c,
(
(

i) VikeJ:f;=fi— 65 <HE <y,

v) VLELET  i>f>fe A Qj=Qr — 6 < % < min{d;;, ou }-

Proof. If Q* violates (i), then f(Q;) = f(Qx) and Q; # Qy for some j, k € J. In
that case, combination of clusters @); and @)y results in a clustering © with A(Q2) <
A(Y) — f(Qy) - sjr < A(2F), since sj; > 0 by assumption. If Q* violates (ii), then
fi > frand 6,;-1 f(Qr) > f(Q;) for some j, k € J. With f(Q;) > f; > fk, this yields
Sri - F(Qr) > f(Q;) = fx, and it follows from Lemma 1 that Q* is not optimal. If
violates (iii), then f(Q;)-¢; > f; - (sj; + ¢;) for some j € J. In that case, removing
job j from cluster @; and creating a new cluster {j} results in a clustering {2 with
A(Q2) < AQY) — f(Q;) ¢+ [ - (sj; + ¢;) < A(©F). Once again, properties (iv) and
(v) can be derived in an analogous way to properties (i) and (ii). O

It can easily be verified that Theorem 2 is indeed a generalization of Theorem 1.
In other words, the dominance rules for the clustering problem with common set-ups,
can also be applied to each shared set-up activity in isolation. More specifically, if
we denote with 7,k € J* two maintenance jobs that are attached to the same set-up
activity @ € Z, then f(Q;) = f(Qr) — Q; = Qr and f; > fi, — f(Q;) = f(Q&),
but also f; = fi — Q; = Q. This is a potentially valuable insight, since these
dominance rules may strongly reduce the complexity of the clustering problem with

shared set-ups.

2.4.3 A dynamic programming algorithm

In this section, we will show that the clustering problem for maintenance jobs with
shared set-ups can also be solved by means of a dynamic programming algorithm.
According to dominance rule (i) of Theorem 2, different clusters must have differ-
ent frequencies. In other words, the clustering problem can be interpreted as the
assignment of set-up activities ¢ € Z and maintenance jobs j € J; to maintenance
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frequencies k € K;, in such a way that total (expected) costs are minimized. Recall
that IC; C K denotes the set of feasible maintenance frequencies for set-up activity
i € T, whereas K = {f; | 7 € J} denotes the set of different maintenance frequencies.

Our analysis now proceeds as follows. As a starting point, we denote with g;(K)
the minimal costs for the subtree associated with set-up activity ¢ € Z, provided
that set-up activities and maintenance jobs within this subtree can only be assigned
to frequencies k € K C K,;. For each set-up activity ¢ € Z, and each possible
state K C K;, we must now decide which frequencies L C K to use. Based upon
this decision, the (optimal) assignment of maintenance jobs j € J* to maintenance
frequencies | € L, as well as the consequences for all lower-level set-up activities
i’ € S;, are immediately clear. More specifically, g;(K) can be determined recursively

by means of the following dynamic programming equation:

9i(K) = Lo {hi(L) +Z;Siga(!3 n /ci,)} :
Here, h;(L) denotes the (minimal) costs associated with assigning set-up activity
¢ € 7 and maintenance jobs j € JI to maintenance frequencies I € L. Obviously,
hi(L) can be determined rather straightforwardly by means of the following expres-
sion:
hi(L) =) si-l+ Y ¢-min{l€ L|1> f;}.
leL jed;
Moreover, £;(K) denotes the set of feasible decisions L C K that can be made
for set-up activity ¢ € 7 in state K C ;:

Li(K)={LCK |max{l € L} > max{f; | j € J;}}.

Obviously, the optimal clustering is now determined by calculation of g; (), since
¢ = 1 denotes the common i.e. highest-level set-up activity, and Ky = K by definition.
In the worst case, this yields a dynamic programming algorithm with 2* states and
decisions, where || denotes the number of different maintenance frequencies. On
the other hand, the set of feasible states K C K; and decisions L. C K for set-up
activity ¢ € Z can often be reduced significantly, by observing that the only relevant

decisions L € L;(K) are those that satisfy the following condition:
LI e Li(K)= h(L) <h(L)or LNKy € L' N Ky for some i’ € S;.

The underlying observation behind this reasoning is that a relevant decision
L C K should not be outperformed by another relevant decision L’ C K under all cir-
cumstances. At the very least, this means that h;(L) > h;(L’) for some L C L' C K
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implies that decision . C K can as well be neglected. Despite the potential reduc-
tions obtained this way, it is still immediately clear that this dynamic programming
algorithm becomes inattractive, or even intractable, if the number of maintenance
frequencies grows too large (e.g. |K| > 10). In such cases, it seems worthwile to
explore the possibilities for the use of other methods. To this end, we also developed

a mixed integer linear programming formulation.

2.4.4 A mixed integer linear programming formulation

Let us now present a mixed integer linear programming formulation, which can be
used to determine an optimal clustering for maintenance jobs with shared set-ups.
To this end, the assignment of set-up activities ¢ € Z to maintenance frequencies
k € K; is comprised into variables z;; € {0,1}. In a similar way, the assignment
of maintenance jobs j € J to maintenance frequencies k& € Kj is represented by
variables y;; € {0,1}:

1 if set-up ¢ € Z is assigned to frequency k € K,
Tike —
' 0 otherwise,

1 if job j € J is assigned to frequency k € Kj,
Yik =
0 otherwise.

Recall that K; = {k € K | kK > f;} reflects the set of feasible maintenance
frequencies for maintenance job j € J. With a; = k - s; > 0, we denote the average
costs per unit of time associated with the assignment of set-up activity ¢ € Z to
maintenance frequency k € K;. Similarly, bjz = k- ¢; > 0 denotes the average costs
per unit of time associated with the assignment of component 5 € 7 to maintenance
frequency k € K;. Since x;, = max{y;x | j € J;} by definition, our problem can now
be formulated as a mixed integer linear program, where our objective is to minimize

the (expected) total costs per unit of time:

Minimize z = > Y @i - T + 2, D bjk - Yjk

€T kek; JjeJ kGKj
Subject to:
(a) T > Ty VieT,i e S ke Ky
(b) Tik > Yik Viel jeJkek,
(©)  Dker; Yk = 1 vied
(d) Ty = 0 Vie I kek;
(e) yir € {0,1} VjeTJ, keK;
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Here, restriction (a) prescribes that the assignment of a set-up activity ¢ € Z to a
maintenance frequency k € K; requires the parental set-up activities to be carried out
with the same maintenance frequency too. In a similar way, restriction (b) prescribes
that the assigment of maintenance job j € J to maintenance frequency k € K;
requires the corresponding set-up activity ¢« € Z to be carried out with the same
maintenance frequency too. Moreover, restrictions (¢) and (e) guarantee that exactly
one frequency k € K is assigned to each maintenance job j € J. As a consequence,
restriction (d) is sufficient to ensure that z;, € {0,1} for all : € 7 and k € K,.

2.4.5 Example (continued)

Let us now illustrate the above-mentioned methods by reconsidering the example of
Figure 2.3b. As a starting point, the dynamic programming algorithm deter-
mines the set of relevant decisions £1(K;) for set-up activity ¢ = 1. The only feasible
decisions are given by {5}, {5,3}, {5,2} and {5, 3,2}, with corresponding costs:

hi({5}) =5 -50 4+ 5 - 30 = 400,
h1({5,3}) = (5+3) - 50 + 3 - 30 = 490,
hi({5,2}) = (5 +2) - 50 + 2 - 30 = 410,

hi({5,3,2}) = (5+3+2)-50 + 2 - 30 = 560.

Since Ko = {5, 3}, it is easily verified that decisions {5, 2} and {5, 3,2} can as well
be neglected. After all, hi({5}) < h1({5,2}) and hy({5,3}) < h1({5,3,2}), whereas
{5} N {5,3} = {5,2} N {5,3} = {5} and {5,3} N {5,3} = {5,3,2} N {5,3} = {5, 3}.
Apparently, the only relevant decisions for set-up activity ¢« = 1 are {5} and {5, 3},
Le. £1(K1) = {{5},{5,3}}. Consequently, the only relevant states for set-up activity
i =2are K = {5} N{5,3} = {5} and K = {5,3} N {5,3} = {5,3}. With this in

mind, the dynamic programming algorithm results in:

92({5}) = hz({5})

5-40+5- (10 + 20) = 350,

92({5,3}) = ha({5,3})

(54+3)-404+5-10+ 3-20 = 430,
min{h({5}) + g2({5}), h2({5,3}) + 92({5,3})
min{400 + 350,490 + 430}

min{750,920} = 750.

gl({57 37 2})

In a similar way, the mixed integer linear program starts with IC; = {5, 3,2},
K = {5,3}, K1 = {5}, Ky = {5,3} and K3 = {5,3,2}, and consequently defines
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11 variables w15, 213, T12, Ta5, T2z, Y15, Y25, Y23, Y35, Y33 and yso. While solving this
problem with a standard ILP solver, the following (optimal) solution was found:
T15 = Tos = Y15 = Yo5 = Y35 = 1 and x13 = Ty = Tog = Yo3 = Y33 = Y32 = 0, with
corresponding costs z = 750. Surprisingly enough, this solution was also found if the
integrality constraints (e) are relaxed. In section 2.6, this phenomenon will be studied
in more detail. But first, we will present some efficient heuristics for the clustering

problem with shared set-ups.

2.5 [Efficient heuristics for the clustering problem

In this section, we will present two efficient heuristics for the clustering problem with
shared set-ups, which are both capable of dealing with a large number of set-up
activities, maintenance jobs and limitative frequencies (e.g. |Z| = 100, |J| = 1000,
IIC| = 50). To achieve this, these heuristics explore the nice structural properties
of the clustering problem with common set-ups, in order to arrive at an optimal or

near-optimal solution for the clustering problem with shared set-ups.

2.5.1 A top-down heuristic

The top-down heuristic (TDH) is based on the assumption that dominance rules (i)
and (ii) for the clustering problem with common set-ups, as derived in Theorem 1,
are also applicable to the clustering problem with shared set-ups. If we denote with
Q; C J the cluster corresponding to maintenance job j € J, these dominance rules
impy that f(Q;) = f(Qk) = Q; = Qr and f; > fi, — f(Q;) = f(Qk) forall j,k € J.
Once again, this means that maintenance jobs j and k with the same frequency
fi = fr can as well be replaced by a single maintenance job [ = {j} U {k} with
frequency f; = f; = fx. By doing so, the collection of maintenance jobs is eventually
subdivided into exactly |K| predefined clusters Uy (1 < k < |K|), each of which
corresponds to a different maintenance frequency k& € K. Subsequently, these clusters
are ordered in such a way that f(U;) > ... > f(U), and the optimal clustering is

determined recursively by means of the following dynamic programming equation:
g(k) = min{g(j — 1) + A(U; U ... UT)}-

Here, g(k) denotes the minimal costs for clustering U;...Uy, and we define g(0) = 0
for notational convience. Recall that A(U) = f(U) - {s(U) + ¢(U)} denotes the
(expected) costs associated with a cluster U C J.
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2.5.2 A bottom-up heuristic

In the bottom-up heuristic (BUH), the clustering problem with m shared set-ups is
decomposed into m consecutive clustering problems with common set-ups. To be
specific, the heuristic starts with the lowest-level set-up activities L ={i € Z | S; =
0}, and determines an optimal clustering for each lowest-level set-up activity ¢ € £
and corresponding maintenance jobs 7 € J* in isolation. Subsequently, the clusters
obtained this way are used as individual composite maintenance jobs at all higher
levels, and this recursive procedure is repeated by proceeding upwards to the root of
the maintenance tree (i = 1). For each set-up activity ¢ € 7 in isolation, we assume
that dominance rules (i) and (ii) for the clustering problem with common set-ups, as
derived in Theorem 1, can be applied.

As an illustrative example, consider an arbitrary set-up activity ¢ € Z, and assume
that predefined clusters U; t/m U, with U; U ... U U, = J; have been formed by the
lower-level set-up activities ¢’ € S;, and by the individual maintenance jobs j € J!.
As before, clusters U; and Uy with identical frequencies f(U;) = f(Uy) are now
replaced by a single cluster U; U Uy, with frequency f(U; U Uy) = f(U;) = f(Ug).
Subsequently, the remaining ¢ < p clusters U, (1 < k < q) are ordered in such a
way that f(Uy) > ... > f(U,). Once again, the optimal clustering for the subtree
associated with set-up activity ¢ € Z, is now determined recursively by means of the

following dynamic programming equation:
g(k) = min {g(j — 1) + Xi(U; U ... LU}

Here, g(k) denotes the minimal costs for clustering U;...Uy, and we define g(0) = 0
for notational convience. Moreover, A\;(U) < A(U) reflects the costs associated with
a cluster U C 7, exclusive of the costs of all higher level set-up activities i’ < i (e.g.
A2({1,2}) = 5- (40 + 10 4 20) = 350 in Figure 2.3b). For notational convenience,
we will denote with €2; the optimal clustering of the subtree associated with set-up

activity ¢ € Z, and with A;(€;) the corresponding (minimal) costs in the sequel.

2.5.3 Example (continued)

As a starting point, the top-down heuristic starts with predetermined clusters
Uy = {1}, Us = {2}, and Us = {3}, with cluster frequencies f(U;) = 5, f(Us) = 3
and f(Us) = 2. Subsequently, the dynamic programming algorithm arrives at {2 =
{{1,2,3}}, with corresponding costs A(£2) =5 - (50 + 40 + 10 + 20 + 30) = 750. In
a similar way, the bottom-up heuristic starts with the lowest level set-up activity
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Figure 2.4: Example of a test problem with 10 set-up activities and 25 maintenance
jobs: set-up and maintenance costs are shown at the corresponding nodes, limitative

frequencies in brackets below.

i = 2, with predetermined clusters U; = {1} and Us = {2}, and cluster frequencies
f(Uy) =5and f(Uy) = 3. Subsequently, the dynamic programming algorithm arrives
at Qo = {{1,2}}, with corresponding costs Ay(€2s) = 5 (40 + 10 + 20) = 350. As
a next step, set-up activity ¢ = 1 is considered with predetermined clusters U; =
{1,2} and Us = {3}, and cluster frequencies f(U;) = 5 and f(Us) = 2. In a similar
way, the dynamic programming arrives at €; = {{1,2,3}}, with corresponding costs
Ay(Q4) =5+ (50 + 40 + 10 + 20 + 30) = 750.

2.6 Computational results

Let us now present the results of a series of numerical experiments that were carried
out to investigate the performance of both heuristics, in relation to the optimal so-
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"1

Figure 2.5: Optimal clustering for the test problem of Figure 2.4.

lution provided by the mixed integer linear programming formulation. To this end,
we created a series of 1000 instances for 24 types of test problems, each of which
corresponds to a fixed number of set-up activities m € {5,10}, a fixed number of
maintenance jobs n € {25,50}, a maximal set-up cost § € {10,20,30}, a maximal
maintenance cost ¢ € {10, 20,30}, and a maximal limitative frequency f € {15,30}.
In each test problem, the parent of set-up activity 7 € {1,...,m} was drawn at random
from the set {1,...,s — 1}. In a similar way, the parental set-up activity of mainte-
nance job j € {1,...,n} was chosen randomly from the set {1,...,m}. Finally, the
parameters s;, ¢; and f; were drawn at random from the sets {1, ..., s}, {1,...,¢} and
{1, ..., f} respectively (see Figure 2.4 for an example).

For each test problem obtained this way, we determined the optimal solution with
the use of the mixed integer linear programming formulation of section 2.4. Moreover,
we administrated the fraction of times that its LP relaxation arrived at an integer

optimal solution, and the number of clusters in the optimal solution as well (see Figure
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2.5 for an example). The performance of both heuristics was determined in terms of
the fraction of times that they were optimal, and the average resp. maximal deviation
from the optimal solution as well. In addition, a pairwise comparison between both
heuristics was made. The results are depicted in Tables 2.3, 2.4 and 2.5 respectively.

From Table 2.3, it can be observed that the vast majority of clustering problems
could be solved to optimality by means of a linear programming formulation. In
all other cases, the deviations were relatively small, with a maximum of only 0.38%
over all 24.000 test problems. Moreover, an integer optimal solution could usually
be found within a few iterations of the consecutive branch and bound algorithm.
Finally, and in compliance with our general expectations, the number of clusters in
the optimal solution increases with the number of maintenance jobs and limitative
frequencies, but decreases with the ratio of set-up to maintenance costs.

In a similar way, the results in Table 2.4 indicate that the average performance
of both heuristics decreases with the number of set-up activities, the number of
maintenance jobs, the number of limitative frequencies, and the ratio of set-up to
maintenance costs. At the same time, however, the performance of both heuristics in
terms of the fraction of times that they were optimal increases with the ratio of set-up
to maintenance costs. In our opinion, this counter-intuitive behavior can be explained
by observing that an optimal clustering consisting of only a few clusters (due to high
set-up costs) is more likely to be generated by the heuristics, in comparison with an
optimal clustering consisting of multiple clusters (due to low set-up costs).

Summarizing, we conclude that the bottom-up heuristic clearly outperforms the
top-down heuristic, at least from an overall perspective. This does not necessarily
mean, however, that the bottom-up heuristic outperforms the top-down heuristic for
each individual test problem. The results in Table 2.5 provide a comparitive study
into the relative performance of both heuristics. Apparently, the top-down heuristic
outperforms the bottom-up heuristic in a significant part of all test problems, al-
though its relative performance reduces strongly as the number of set-up activities
grows. This is intuitively clear, since the bottom-up heuristic more explicitly takes
into account the complexity of the maintenance tree under consideration. Never-
theless, we believe that both heuristics are of practical value, because each of them

generates near-optimal solutions within negligible computation times.

2.7 Concluding remarks

In this chapter, we showed that the clustering problem for frequency-constrained

maintenance jobs with common set-ups can be solved in polynomial time by means
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Table 2.3: Outcomes of the (mixed integer) linear programming formulation for 24 x

1000 randomly generated test problems with m set-up activities and n maintenance
jobs, where s; € {1,...,5}, ¢; € {1,...,;¢} and f; € {1, ..., f}.

% deviation (LP)

# clusters (MILP)

m n S c f optimal ~ maximal minimal average  maximal
5 25 10 30 15 99.3 0.22 3 6.73 13
bt 25 20 20 15 99.0 0.41 2 4.74 11
5 25 30 10 15 99.6 0.14 1 3.17 9
bt 25 10 30 30 98.6 0.20 3 7.17 16
S 25 20 20 30 99.2 0.26 2 4.84 12
bt 25 30 10 30 99.3 0.26 1 3.32 11
bt 50 10 30 15 98.0 0.15 5 9.15 15
bt 50 20 20 15 96.7 0.37 3 6.48 13
5 50 30 10 15 98.4 0.11 2 4.35 11
5 50 10 30 30 94.6 0.21 ) 10.47 21
5 50 20 20 30 95.5 0.24 3 6.96 17
bt 50 30 10 30 97.3 0.23 2 4.58 15
10 25 10 30 15 99.0 0.26 3 6.58 13
10 25 20 20 15 98.9 0.18 1 4.79 12
10 25 30 10 15 99.6 0.11 1 3.19 8
10 25 10 30 30 98.6 0.21 2 6.95 17
10 25 20 20 30 99.1 0.36 1 4.85 12
10 25 30 10 30 99.8 0.10 1 3.37 9
10 50 10 30 15 97.5 0.15 4 8.86 15
10 50 20 20 15 96.0 0.23 2 6.25 14
10 50 30 10 15 97.7 0.38 1 4.27 11
10 50 10 30 30 95.6 0.17 4 10.27 20
10 50 20 20 30 95.2 0.30 3 6.94 16
10 50 30 10 30 98.2 0.16 1 4.54 12
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Table 2.4: Performance of the top-down (TDH) and bottom-up (BUH) heuristic,
for 24 x 1000 randomly generated test problems with m set-up activities and n main-
tenance jobs, where s; € {1,...,5}, ¢; € {1,...,¢} and f; € {1, ..., f}.

% deviation (TDH) % deviation (BUH)
m n S ¢ 7 optimal average maximal optimal average maximal
5 25 10 30 15 16.1 1.0 7.1 51.7 0.2 3.4
5 25 20 20 15 18.2 1.7 11.7 46.5 0.4 4.7
5 25 30 10 15 25.5 2.1 16.3 56.0 0.4 4.9
5 25 10 30 30 17.9 0.9 6.3 46.9 0.2 2.8
5 25 20 20 30 16.0 1.7 11.8 44.0 0.4 4.4
5 25 30 10 30 25.2 2.0 14.0 47.6 0.4 3.8
5 50 10 30 15 4.4 1.0 4.3 30.1 0.3 2.6
5 50 20 20 15 6.1 1.7 8.8 25.4 0.5 3.9
5 50 30 10 15 15.1 2.1 12.5 28.1 0.7 5.7
5 50 10 30 30 4.0 1.0 4.5 194 0.3 2.3
5 50 20 20 30 7.7 1.6 8.3 19.5 0.5 3.7
5 50 30 10 30 114 2.0 12.6 24.6 0.6 4.7
10 25 10 30 15 6.8 1.5 9.0 37.0 0.3 4.4
10 25 20 20 15 7.3 2.7 14.9 39.1 0.5 6.1
10 25 30 10 15 13.8 3.2 17.9 50.3 0.4 6.1
10 25 10 30 30 7.3 1.4 8.0 35.0 0.3 3.6
10 25 20 20 30 7.0 2.6 13.6 35.5 0.5 7.1
10 25 30 10 30 13.2 3.2 19.4 44.3 0.5 5.1
10 50 10 30 15 1.0 1.7 7.3 19.9 0.4 2.1
10 50 20 20 15 1.4 2.7 10.5 14.1 0.7 2.7
10 50 30 10 15 5.0 3.2 14.3 24.0 0.6 3.2
10 50 10 30 30 0.2 1.7 5.6 10.6 0.4 1.7
10 50 20 20 30 1.7 2.8 12.2 12.7 0.6 2.8
10 50 30 10 30 3.8 3.1 15.3 19.0 0.6 3.1
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Table 2.5: Comparison of the top-down (TDH) and bottom-up (BUH) heuristic, for

24 x 1000 randomly generated test problems with m set-up activities and n mainte-

nance jobs, where s; € {1,...,8}, ¢; € {1,...,¢} and f; € {1,..., f}.

m n S5 ¢ f %TDH<BUH % TDH=BUH % TDH > BUH
5 25 10 30 15 15.6 12.5 71.9
5 25 20 20 15 17.9 12.8 69.3
5 25 30 10 15 14.6 21.3 64.1
5 25 10 30 30 17.2 15.3 67.5
5 25 20 20 30 175 13.2 69.3
5 25 30 10 30 15.6 23.0 61.4
5 50 10 30 15 18.2 1.7 80.1
5 50 20 20 15 21.3 1.9 76.8
5 50 30 10 15 27.4 5.2 67.4
5 50 10 30 30 20.1 1.2 78.7
5 50 20 20 30 25.0 1.9 73.1
5 50 30 10 30 24.7 5.3 70.0
10 25 10 30 15 11.2 7.8 81.0
10 25 20 20 15 11.3 7.1 81.6
10 25 30 10 15 7.5 16.1 76.4
10 25 10 30 30 11.3 8.9 79.8
10 25 20 20 30 11.7 8.1 80.2
10 25 30 10 30 8.0 15.9 76.1
10 5 10 30 15 115 0.6 87.9
10 5 20 20 15 13.9 0.8 85.3
10 5 30 10 15 12.7 3.7 83.6
10 50 10 30 30 10.6 0.1 89.3
10 50 20 20 30 11.6 0.5 87.9
10 50 30 10 30 13.1 3.4 83.5
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of an efficient dynamic programming algorithm. In addition, we developed a dynamic
programming algorithm, as well as a mixed integer linear programming formulation,
which can be used to determine an optimal clustering for frequency-constrained main-
tenance jobs with shared set-ups. Finally, two efficient heuristics were developed
which generate near-optimal solutions in negligible computation times. Summariz-
ing, we believe that our methods can be applied in many practical situations, and
are a step forward into effective and efficient strategic maintenance planning. Nev-
ertheless, a number of possible generalizations of, and extensions to our modelling
framework are still under consideration.

As a starting point, the positive effect of preventive maintenance clustering in
terms of a reduction in equipment failures and corresponding corrective maintenance
costs, was not considered in our analysis. In this respect, it seems worthwile to
consider frequency-dependent costs instead of frequency constraints, as a result of
which clustering might become even more profitable in comparison with our approach.
Another possibility is to allow parallel execution of maintenance jobs within a cluster,
and/or simultaneous execution of clusters within a clustering. In this chapter, we
assumed that no cost reductions could be obtained by carrying out maintenance jobs
in parallel, or maintenance packages simultaneously. Of course, other assumptions
would lead to other interesting versions of the clustering problem. We will come back
to that in the following chapter.

Finally, it might also be worthwile to incorporate the possibilities for workload
balancing in our modelling framework. In view of cost efficiency, it might be optimal
to carry out all maintenance jobs simultaneously, whereas this solution might be
less attractive from an administrative point of view. To avoid this, an additional
restriction could be build in concerning the total costs and/or times of each individual
cluster. Moreover, sensitivity analysis could be performed in order to determine the
extra costs that would be incurred due to this additional constraint on the clustering

problem. These suggestions, however, are left for future research.



49

Chapter 3

Coordinated planning of preventive
maintenance jobs with shared set-ups and

frequency-dependent costs

In this chapter, we consider an indirect clustering problem for preventive
maintenance jobs with shared set-ups. More specifically, we consider a multi-
setup multi-component production system, in which each component is main-
tained preventively at integer multiples of a certain basis interval. Once again,
creating an occasion for preventive maintenance on one of these components
requires a collection of preparatory set-up activities to be carried out in ad-
vance, with corresponding set-up costs. The main difference with the previous
chapter, however, is that corrective maintenance costs are also incorporated.
This leads to frequency-dependent maintenance costs rather than frequency
constraints. A general mathematical framework is presented which allows for
a large class of preventive maintenance strategies for each component. Our
approach generalizes previous work in the sense that it provides efficient MILP
and DP formulations, in which considerably more degrees of freedom are taken
into account. Computational results indicate that near-optimal solutions are

obtained within reasonable computation times.

3.1 Introduction

As in the previous chapter, we consider a production system consisting of multiple
set-up activities and multiple components, which are organized in a tree-like struc-
ture. Creating an occasion for preventive maintenance on one of these components,

requires a collection of preparatory set-up activities to be carried out in advance, with
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corresponding set-up costs. If components are maintained simultaneously, the cor-
responding set-up activities can be combined. In this respect, there is a perspective
of significant savings if some kind of coordination is built in concerning the starting
time of preventive maintenance on different components. In the previous chapter,
this was incorporated by means of a so-called direct clustering problem, in which the

collection of maintenance jobs was subdivided into several maintenance packages.

In this chapter, clusters of maintenance jobs are formed indirectly whenever pos-
sible. More specifically, we consider the case where each component is maintained
preventively at integer multiples of a certain basis interval, which is the same for all
components. In general, this yields an optimization problem in n+ 1 variables, where
n denotes the number of components. The main difference between the previous
chapter and our approach here, is that corrective maintenance costs are also incor-
porated. This leaves us with frequency-dependent maintenance costs rather than
frequency constraints. The underlying idea behind this approach originates from
Gertsbakh (1977), who considered a somewhat similar but less powerful modelling
framework with multiple set-up activities, in which components can only be attached
to lowest-level set-up activities (see Figure 3.1). Since then, applications of this type
of set-up structures into maintenance modelling have been scarce, e.g. see Sculli and
Suraweera (1979) and Van Dijkhuizen and Van Harten (1997b), possibly because of
both practical and theoretical complications.

At the same time, the single set-up version of this problem has gained consid-
erably more attention in existing literature, since it is closely related to the well-
known joint replenishment problem from multi-item inventory theory, e.g. see
Bomberger (1966), Goyal (1973), Goyal (1974), Silver (1976), Kaspi and Rosenblatt
(1983), Hariga (1994) and Ben-Daya and Hariga (1995). The reader is referred to
Goyal and Satir (1989) and Wildeman, Frenk, and Dekker (1997) for extensive and
up-to-date literature reviews on the joint replenishment problem. Here, we restrict
ourselves to its applications into maintenance modelling. Pioneering work on this sub-
ject was carried out by Goyal and Kusy (1985) and Goyal and Gunasekaran (1992),
who presented a number of iterative heuristics in case the deterioration cost functions
are of a very specific form. Just recently, Wildeman (1996) presented a mathematical
framework which allows for a much larger class of preventive maintenance models,
and solved this problem to optimality.

In this chapter, we will present a more general and powerful modelling framework,
which allows for multiple set-up activities, multiple components, and a variety of
maintenance strategies for each component. Our approach generalizes previous work

in the sense that it provides efficient dynamic programming and mixed integer linear
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Figure 3.1: Example of the modelling framework considered by Gertsbakh (1977),

in which components can only be attached to lowest-level set-up activities.

programming formulations, in which considerably more degrees of freedom are taken
into account than in existing literature. Moreover, it contains some interesting new
elements, which are typical for our setting of multiple set-up activities. But first, let

us discuss our general approach in some more detail.

3.2 (General approach

Consider a production system consisting of m set-up activities, denoted Z = {1, ..., m},
and n components, denoted J = {1,...,n}, which are organized in a tree-like struc-
ture. Creating an opportunity for preventive maintenance on component j € J
requires a collection I; C 7 of preparatory set-up activities to be carried out in
advance, with corresponding set-up costs ) . I, Si- Here, s; > 0 denotes the individ-
ual cost of set-up activity ¢ € Z. If components are maintained simultaneously, the
corresponding set-up activities can be combined. More specifically, preventive main-
tenance on a subset of components U C 7 involves a set-up cost s(U), which depends
completely on the set of required set-up activities. As in the previous chapter, this

yields the following expression for s(U):

s(U) = Z Si.

s U Ij
jeu
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Within this setting, we consider preventive maintenance activities of the block
type. To be specific, each component is maintained preventively at fixed intervals
(e.g. daily, weekly, monthly, yearly), whereas intermediate corrective maintenance
activities are carried out upon failure. With ®;(z), we denote the expected main-
tenance costs (exclusive of preventive set-up costs) of component j € J per unit
of time, if maintained preventively every z > 0 time units (or any other measur-
able quantity e.g. running hours). For notational convenience, and without loss of
generality, we restrict ourselves to cost functions of the following type:

¢ + M;(x)
bjz) = —

Here, ¢; > 0 reflects the expected cost of preventive maintenance on component
j € J. Moreover, M;(z) denotes the expected cumulative deterioration costs (due to
failures, repairs, etc.), z time units after its last preventive maintenance. By doing
this, a variety of maintenance models can be incorporated, allowing different models
for each component. The reader is referred to Dekker (1995) for an extensive list of

block-type models. Here, we only mention some important ones:

e in the standard block replacement model (Barlow and Proschan 1965),
a component is replaced correctively upon failure, and preventively at fixed
intervals of length x > 0;

e in the modified block replacement model (Berg and Epstein 1976), a com-
ponent is replaced correctively upon failure, and preventively at fixed intervals
of length x > 0, but only if its age exceeds a certain treshold value y < z;

e in the minimal repair model (Barlow and Hunter 1960), a component is re-
placed preventively at fixed intervals of length x > 0, with intermediate failure
repairs occuring whenever necessary, restoring the component into a state as

good as before failure;

e in the standard inspection model (Barlow, Hunter, and Proschan 1963), a
component is inspected preventively at fixed intervals of length x > 0, followed

by a corrective replacement if it turns out to have failed upon inspection;

e in the delay time model (Christer and Waller 1984), a component passes
through a visible defective state before it actually fails somewhat later; in line
with this, the component is replaced correctively upon failure, and inspected
preventively at fixed intervals of length x > 0, followed by a preventive replace-
ment if it turns out to be defective at the time of inspection.
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In our modelling framework, we assume that the initiation of preventive mainte-
nance on different components is based on the same system parameter x, e.g. calendar
or operating time, and that the deterioration cost functions M;(x) are all available.
In the modified block replacement model, this means that the optimal value of y can
be determined once the value of x is given. Moreover, we assume that the individual
cumulative deterioration costs M;(.) for each component are totally independent of
all other components. In other words, the possibilities for dynamic and/or oppor-
tunistic grouping, i.e. the combination of preventive with corrective maintenance
activities in an operational planning phase, are not accounted for in our approach
here. Of course, other assumptions would lead to other interesting versions of the

problem under consideration, but are left for future research.

3.2.1 Further notation and assumptions

Throughout this paper, and analogous to the previous chapter, we will use the fol-
lowing notation and assumptions to characterize the mutual relationships between
set-up activities and components. First of all, we denote with J; = {j € J | i € I;}
and J; C J; the set of components that require resp. are attached to set-up activity
i € Z. In a similar way, we let S; C Z and S} C Z denote the set-up activities i’ € 7
that require resp. are attached to set-up activity ¢ € Z. As an illustrative example,
consider a production system consisting of m = 3 set-up activities and n = 3 compo-
nents, and assume that component j requires all set-up activities ¢+ < j to be carried
out in advance. Then it is easily verified that:

L ={1}, L ={1,2}, 5 ={1,2,3},
Ji=1{1,2,3}, Jo = {2,3}, Js = {3},
Jik = {1}7 JS = {2}7 Jék = {3}7
S1=12,3}, Sy ={3}, S3 =g,
St=A{2}, 55 =1{3}, Si=2.

For notational convenience, and without loss of generality, we assume that i > i
for all i € Z and ¢ € S; in the sequel. Moreover, and in line with the above, we
assume that I; N...N I, = {1}, i.e. there exists exactly one common set-up activity
i=1.If L N..N1I, =0, the problem can be decomposed into two or more (smaller)
subproblems, which can be treated and solved separately. If |I;N...N1,| = k > 1, the
common set-up activities i € {1,...,k} can as well be replaced by a single common
set-up activity, with corresponding set-up costs s; + ... + s > 0. For similar reasons,
we can assume that J; £ @ for all © € Z, since obviously set-up activities with no
components can as well be neglected without affecting the problem.
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Table 3.1: Example of a maintenance cycle for a production system consisting of
m = 3 set-up activities and n = 3 components, where component j requires all set-up

activities ¢ < j to be carried out in advance.

components 3

2 3 2 2 3 2 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 set-ups 3 3

2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

periods 5)

3 o 3 3 5) 3 3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
opportunities

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3.2.2 Problem definition

The coordination of preventive maintenance activities is now modelled as follows:
preventive maintenance on component j € J is carried out at integer multiples
of k; - t time units, i.e. at times {0,k; - ¢,2 - k; - ¢,...}, where k; € N* denotes the
maintenance period of component j € J relative to a basis interval of ¢ > 0 time
units. Obviously, this corresponds to a repetitive, periodic preventive maintenance
cycle of lem(ky, ..., k) - t time units, where lem(ky, ..., k;,) denotes the least common
multiplier of the integers k; (j € J), e.g. lem(2,3,4) = 12. In general, this leads to
an optimization in n + 1 variables.

As a starting point of our analysis, we will restrict ourselves to the case where the
maintenance interval ¢ > 0 is fixed, and the integer periods k; must be chosen from a
finite set of possibilities, say k; € K for all j € J. This situation arises if ¢ is a natural
time limit (e.g. 1 day, week, or month) and one is interested in a maintenance cycle of
prescribed length (e.g. 1 year). In general, this yields an optimization problem in n
variables (kj, ..., k), with |KC|" different solutions, where our objective is to minimize

average maintenance costs per unit of time:
. Si - Ai(k)
(P) pin {Z ok '”} -
i€l jeJ

Here, A;(k) represents the fraction of times that set-up activity ¢ € Z is carried
out at an opportunity for preventive maintenance (e.g. A;(k) =1, Ay(k) = 7/15,
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and Ag(k) = 1/5 in Table 3.1). Since each occurence of component j € J implies the
occurence of all set-up activities 7 € I, it is easily observed that max{k;* | j € J;} <
A;(k) <1 for all 4 € Z, implying that A;(k) = 1 if k; = 1 for some j € J;. Based
on the principle of inclusion and exclusion, Dagpunar (1982) derives the following

general expression for A;(k):

[7;]

Aik) = (=D Y dem(kyy, ok}

=1 {71501} CJ;

Typically, the basis maintenance interval ¢ is restricted to several days or weeks,
whereas the corresponding maintenance cycle lem(ky, ..., k,) - t varies from several
weeks to several months, or even years. In case of a prescribed cycle length of "= N -
t > 0 time units, appropiate values for k; must satisfy N mod k; = 0. Amongst others,
this approach is particularly useful in calendar-based maintenance planning systems,
by which workload and capacity profiles have to be matched on a regular basis. On the
other hand, if there are no explicit constraints on the length of the basis maintenance
interval and the corresponding maintenance cycle, our optimization problem becomes

even more complex:

. . Si - Ai(k)
(@) min min {; — +jezjq)j(kj : t)} :

Examples of this type can be found in various industries, e.g. if the initiation of
maintenance activities is based on cumulative operating time rather than calendar
moments. In such cases, the need for well-defined maintenance intervals (e.g. multi-
ples of 100 or 1000 running hours) is less restricted, and often based on intuitive or

administrative reasoning only.

3.2.3 Literature review

Up to our knowledge, problems (P) and () have not been addressed in existing
literature in this general form, which allows for multiple set-up activities, multiple
components, and a large class of preventive maintenance models for each component.
Only Gertsbakh (1977) considers a somewhat similar but less powerful modelling
framework for problem (P), in which maintenance jobs can only be attached to
lowest-level set-up activities, and the set of maintenance periods is of a very special
structure IC = {k1, ..., k, }, where ky; < ... < k, and k; is an integer multiple of &; for
all i < j. Given this restrictive modelling framework, the author provides an efficient
algorithm with which problem (P) can be solved to optimality.
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On the other hand, the single set-up version (m = 1) of these problems has
gained considerably more attention in existing literature, e.g. see Goyal and Kusy
(1985), Goyal and Gunasekaran (1992), and Wildeman (1996). For computational
reasons, the correction factors A;(k) have usually been neglected, or - equivalently
- assumed to be equal to one in the optimal strategy. Although this approach is cer-
tainly defendable in case of a single set-up activity, it is obvious that this assumption
cannot be sustained within our setting of multiple set-up activities. After all, the
possibility that A;(k) < 1 for some i € 7 is essential in our approach.

In general, finding an optimal maintenance strategy with correction factors is a
very complex problem, even in case of a single set-up activity (Goyal 1982). In existing
literature, we did not find any optimal or near-optimal methods to solve the single
set-up versions of problems (P) and () with correction factors, possibly because of
the inherent mathematical complications. Even for the joint replenishment problem,
where the correction factor was introduced by Dagpunar (1982), no references could

be found in which a (heuristic) solution approach to these problems is presented.

3.2.4 QOutline

This chapter is organized as follows. In section 3.3, we will show that problem (P)
can be solved to optimality by means of a dynamic programming algorithm, as well
as a mixed integer linear programming formulation. Subsequently, a lower bound for
problem (@) is derived in section 3.4, based upon which two heuristic approaches
for problem (@) are developed in sections 3.5, 3.6 and 3.7 respectively. In section
3.8, these heuristics are illustrated by means of a numerical example, which offers
useful insights. Subsequently, computational results in section 3.9 show that near-
optimal solutions are obtained within reasonable computation times. Finally, some

conclusions and recommendations are summarized in section 3.10.

3.3 Optimization of problem (P)

As a starting point, we discuss how problem (P) can be solved by means of a dynamic
programming algorithm. Next, a mixed integer linear programming formulation will
be presented, with which problem (P) can also be solved to optimality. For notational
convenience, a less efficient but more insightful and didactical version is presented
first. Subsequently, two reduction techniques are presented which strongly reduce the
size of this problem, especially if the set of possible maintenance periods K is large.
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3.3.1 A dynamic programming algorithm

As in the previous chapter, the main underlying observation behind our dynamic
programming approach is that problem (P) can be interpreted as the assignment of
set-up activities ¢ € Z and maintenance jobs j € J to maintenance periods k € K,
in such a way that total (expected) costs per unit of time are minimized. This is a
potentially valuable insight, since the assignment of component j € J to maintenance
periods k£ € K requires all parental set-up activities ¢ € I; to be assigned to the same
maintenance period too.

To continue our analysis, let us denote with g;(K’) the minimal costs for the subtree
associated with set-up activity ¢ € Z, provided that set-up activities and maintenance
jobs within this subtree can only be assigned to maintenance periods k£ € K C K.
For each set-up activity ¢ € Z, and each possible state K C K, we must now decide
which maintenance periods L C K to use. Based upon this decision, the (optimal)
assignment of maintenance jobs j € J7 to maintenance periods [ € L, as well as the
consequences for all lower-level set-up activities ¢’ € S}, are immediately clear. More
specifically, g;(K) can be determined recursively by means of the following dynamic

programming equation:

Here, h;(L) denotes the (minimal) costs associated with the assignment of set-up
activity « € 7 and maintenance jobs j € J* to maintenance periods [ € L. It is easily

verified that h;(L) can be determined as follows:

Under some weak conditions, the calculation of h;(L) can be performed in a rather
straightforward manner. We will come back to that later on in this chapter. Here,
we only mention that the optimal solution to problem (P) can now be determined
recursively by calculation of ¢;(K), since i = 1 denotes the common i.e. highest-
level set-up activity. In the worst case, this yields a dynamic programming algorithm
with 2/Xl states and decisions, where || denotes the number of different maintenance
frequencies.

On the other hand, the set of relevant states K C K and decisions L. C K for set-
up activity ¢ € Z can often be reduced significantly, by observing that h;(L) > h;(L')
for some L C L' C K implies that decision L C K can as well be neglected. After all,
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it leads to higher (direct) costs and less flexibility for all lower-level set-up activities.
At the very least, this means that A;(L) = A;(L') for some L C L' C K implies that
decision L C K can as well be neglected. If K = {1,2,3,4}, this means that the
only relevant decisions are {1,2,3,4}, {2,3,4}, {2,4}, {3,4}, {3} and {4}. All other
decisions can as well be neglected, since e.g. A({2,3}) = £ = & = A({2,3,4}) and
{2,3} C{2,3,4}.

Obviously, these nice structural properties should be further exploited in formu-
lating an efficient dynamic programming algorithm for the optimization of problem
(P). Nevertheless, this approach would still become inattractive, or even intractable,
if the number of maintenance periods grows too large (e.g. |K| > 10). In such
cases, it is also possible, and probably more efficient to solve the problem by means
of a mixed integer linear programming formulation. In the following section, this

alternative approach will be discussed in more detail.

3.3.2 A mixed integer linear programming formulation

Let us now present a mixed integer linear programming formulation, with which
problem (P) can also be solved to optimality. The underlying observation behind
this formulation is that, given the basis maintenance interval of ¢ > 0 time units, the
assignment of components j € J to maintenance periods k € K will always result in
a preventive maintenance cycle of at most lem(K) - ¢ time units. In line with this,
we denote with £ = {1,...,lem(KC)} the set of so-called maintenance opportunities
{0,¢,2 - t,...} within this preventive maintenance cycle (e.g. |£| = 15 in Table 3.1).

To continue our analysis, we denote with K; = {k € K | [ mod k = 0} the
set of maintenance periods that correspond with maintenance opportunity [ € L
(e.g. K5 = Kjyo = {1,5} in Table 3.1). The problem now consists of assigning
components j € J to maintenance periods £ € I, in such a way that the costs of
the corresponding maintenance cycle are minimized. In our model, the assignment of
set-up activities ¢ € Z to maintenance opportunities [ € L is comprised into variables
xy € {0,1}, whereas the assignment of components j € J to maintenance periods
k € K is represented by variables y;; € {0,1}:

1 if set-up ¢ € 7 is assigned to opportunity [ € L,
Ty =
otherwise,

1 if component j € J is assigned to period k € K,
Yjk =
’ otherwise.
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With a;; = s;/(lem(KC) - t), we denote the average cost per unit of time associated
with the assignment of set-up activity ¢ € Z to maintenance opportunity [ € L.
Similarly, b;, = ®;(k-t) denotes the average cost per unit of time associated with the
assignment of component j € J to maintenance period k € K. With this in mind,
problem (P) can now be formulated in terms of a mixed integer linear program, where

our objective is to minimize average maintenance costs per unit of time:

Minimize > Y ay-za+ >, > bk - yjk

i€Tlel JET kEK

Subject to:

(a) Ty > X VieI,leLieS;

(b) T > Yk VieZ,leL,je JkeK,
(©) Yiexvr = 1 vieJ

(d) g > 0 VieZ,lel

(e) yr € {0,1} VjeTJ,kek

Here, restriction (a) states that the assignment of set-up activity ¢ € Z to main-
tenance opportunity [ € L requires the parental set-up activities to be carried out
at the same maintenance opportunity too. Similarly, restriction (b) ensures that the
assignment of component j € J to maintenance period k € K causes the correspond-
ing set-up activity to be carried out at the corresponding maintenance opportunities
too. Moreover, restrictions (c) and (e) guarantee that exactly one period is assigned

to each component. As a consequence, restriction (d) is sufficient to ensure that
zy €{0,1} foralli € Z and [ € L.

3.3.3 Problem reduction

In general, the number of maintenance opportunities lem(K) grows exponentially
with the set of possible maintenance periods K. Therefore, we have developed a
more efficient mixed integer linear programming formulation, which is based on the

following observations:

e maintenance opportunities [ € £ with K; = & can as well be left out of consid-

eration, since evidently z;; = 0 for all ¢ € Z in an optimal solution;

e maintenance opportunities ly,l, € £, with K;, = K;, and [; # ls, can as well
be replaced by a single maintenance opportunity [ with K; = K;, = K, and
corresponding cost a; = a;, + a;, for all ¢ € Z, since evidently x;;, = z;, for all

t € Z in an optimal solution.
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Obviously, these observations may lead to significant reductions in the problem
size. To be specific, let us denote with £* the reduced set of maintenance opportu-
nities, and with n(U) the number of times that precisely cluster U C K shows up in
the maintenance cycle (e.g. n({1,3}) = 4 and n({1,5}) = 2 in Table 3.1). Then the
number of opportunities |£*| to be considered in the reduced version of the problem
equals the number of clusters U C K with n(U) > 0. Based on the principle of
inclusion and exclusion, 7(U) yields an expression which is similar to A;(k):

K|
n(U) =lem(K)- > (=10 3" dem(ky, k)
I=|U| UC{k1,...k }CK

In general, the determination of n(U) with the use of this equation is a complex
problem, since the number of clusters U C K grows exponentially with the number of
possible maintenance periods /. For similar reasons, enumeration of all maintenance
opportunities up to lem(K) is no valid option. Apparently, a more efficient method
has to be constructed. In this respect, it is useful to observe that the first occurence
(if any) of cluster U C K in the maintenance cycle must be observed at maintenance
opportunity { = lem(U). This means that the following relation holds for all U C K:

n(U) > 0 <= lem(U) mod k #£ 0 for all k € K\ U.

By doing this, a large number of clusters can usually be discarded beforehand.
Moreover, the frequency of occurence of the remaining clusters within the mainte-
nance cycle can be evaluated by means of the following implicit relation, which holds
for all U C K, and follows simply by taking lem(U) as the new time step. Here, we

define lem(@) = 1 for notational convenience:

lem(U) - > " (V) = lem(K).

VouU

3.3.4 An iterative procedure to construct L*

Our analysis now proceeds as follows. As a starting point, the set of maintenance
periods K = {k1,...,k,} is ordered such that k; < ... < k,. Subsequently, we define
); as the set of clusters U C {ky, ..., k;} with n(U) > 0, in case the set of possible
maintenance periods would be reduced to {ki, ..., k; }. Obviously, we have 0y = {{1}}
if £y = 1, and @ = {@,{k;}} otherwise. Since we are mainly interested in €, it
is now sufficient to formulate an (efficient) iterative procedure which constructs €2; 1

from €;.
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First of all, we observe that U € €;,; implies that either U € ; or U \ {ki11} €
Q;, or both. Hence, it is sufficient to determine for each U € €); whether, and under
which conditions U € ;11 and/or UU{k;11} € Q;41, in order to construct ;47 from
Q. It is easily verified that this can be done in the following, rather straightforward
way. Starting with €);.1 = @, it is determined for each U € §2; whether either one,

or both of the following conditions are satisfied:
(1) lcm(U) mod ki—l—l 7é O,
(ii) lem(U U {kis1}) mod k # 0 for all k € {ky,....k:} \ U.

If condition (i) is satisfied, §2;11 is extended with cluster U. Moreover, if condition
(ii) is satisfied, €2;41 is extended with cluster U U {k;;1}. The underlying observation
behind these conditions is that the first occurence (if any) of cluster U C {ki, ..., ki1 }
must take place at maintenance opportunity I = lem(U). But this occurs if and only
if lem(U) mod k # 0 for all k € {ki,...,ki11} \ U. Note that condition (ii) is always
true if U = {k1, ..., k;}, and thus {ki, ..., kiy1} € Qi1 for all i < p. Once €2, has been
determined, the values of n(U) for all U € €2, are determined recursively as follows:

gy = s~y

-~ lem(U) VeQUcV

As an example, consider the maintenance cycle of Table 3.1. Then it is easily

verified that Q; = {{1}}, Q = {{1},{1,3}}, and Q3 = {{1},{1,3},{1,5},{1,3,5}}.

Starting with n({1,3,5}) = 1, the remaining clusters are evaluated as follows:

n({1,3}) =lem(1,3,5)/lem(1,3) — n({1,3,5}) = 4,
n({1,5}) =lem(1,3,5)/lem(1,5) — n({1,3,5}) = 2,
n({1}) =lem(1,3,5)/lem(1) — n({1,3}) — n({1,5}) —n({1,3,5}) = 8.

Clearly, this approach yields an alternative problem formulation with significantly
less maintenance opportunities, and thus variables and constraints (see Table 3.2).
But even in the reduced version of our problem, the number of maintenance opportu-
nities may still grow exponentially with the number of maintenance periods. On the
other hand, it is also possible that the number of maintenance opportunities equals
the number of maintenance periods, i.e. |£*| = |K|. An example of this type was pre-
sented by Gertsbakh (1977), who considers the case where each possible maintenance
period is an integer multiple of all other, but smaller maintenance periods. Although
this problem can be solved efficiently with the use of dynamic programming, our
more general mixed integer linear programming formulation is also well-equiped to

deal with such problems, due to the small amount of maintenance opportunities.
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Table 3.2: Reductions in problem size for several period sets I = {1, ...,n}.

n 1 2 3 5 10 15 25
| 1 2 6 60 2520 360360 26771144400
1C*| 1 2 4 12 48 192 2880

3.3.5 Numerical validation

Of course, our mixed integer linear programming formulation was tested on a series
of randomly created (small) test problems. For a detailed description of these test
problems, we refer to the computational results in section 3.9. Here, we only mention
that the LP-relaxation generated an integer, and thus feasible solution to problem
(P), in approximately 68% of all test problems, whereas the average deviation with
respect to the optimal solution was only 0.89% in all other cases. Moreover, an op-
timal integer solution was usually found within a few iterations of the consecutive
branch and bound algorithm. Recall that similar, and even stronger results were
observed for the clustering problem with frequency-constrained maintenance jobs, as
considered in the previous chapter. Probably, this phenomenon originates from the
fact that problem (P) is closely related to a standard assignment problem, which is
known to possess the above-mentioned integrality property. Apparently, the under-
lying hierarchical structure of set-up activities and components does not conflict too
much with this nice and useful property of the standard assignment problem.

3.4 A lower bound for problem (Q)

In general, problem (@) is a complex mixed continuous-integer programming problem,
which makes it difficult to solve to optimality. Under some weak conditions, however,
its complexity can be reduced significantly. In this section, we will present a relaxation
of problem (@), with which a lower bound for the optimal solution can be derived.
To a certain extent, this approach is based upon, and therefore similar to Wildeman
(1996), who developed an optimal solution approach to the single set-up version of this
problem without correction factors. Nevertheless, it contains a variety of interesting
new elements which are typical for our setting of multiple set-up activities.

3.4.1 Model assumptions

As a starting point of our analysis, we assume that M;(z) is (i) strictly positive, (ii)
strictly increasing, (iii) strictly convex and (iv) twice continuously differentiable on
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(0,00) for all j € J. Simply stated, these assumptions are related to an increasing
marginal cost rate for postponing preventive maintenance activities (Berg 1980). In
general, they account for a large class of preventive maintenance models of the block
type, including the minimal repair model (Barlow and Hunter 1960), the standard
inspection model (Barlow, Hunter, and Proschan 1963), and the delay time model
(Christer and Waller 1984). On the other hand, if one or more components are
modelled according to a standard block replacement model (Barlow and Proschan
1965) or modified block replacement model (Berg and Epstein 1976), assumption
(iii) may not be satisfied. In that case, however, our methods can still be used to
obtain approximate results.

Lemma 2 Suppose that M;(x) is strictly positive, strictly increasing, strictly convex
and twice continuously differentiable on (0,00). Then ®;(x) has exactly one local

minimum x; < oo. Moreover, ®;(1/x) is strictly convex on (0, 00).

Proof. Let us first derive some algebraic expressions for the first and second deriv-
atives of the deterioration cost function ®;(x) = (¢; + M;(x))/z, for x > 0:
Mi(x) -z — (¢ + Mj(x))  Mj(x) — O;(x)

@) () = L - R

(M () — ®j(x)) - & — (Mj(x) — Bj()) _ Mj(x) —2- Bj(z)

<I>;.’(m) - 2 :

T T

Since each local minimum z% > 0 must at least satisfy ®’(x%) = 0 and ®(z}) > 0,
it follows from the above equations that these conditions can be formulated equiv-
alently as Mj(z5) = ®;(z;) and M} (x}) > 0. Since ®;(z7) < oo by definition,
and M;(z) is assumed to be strictly increasing and strictly convex, this implies the
uniqueness of x}. For similar reasons, lim, o, Mj(z) = oo yields x} < oo. Finally,
with ®;(1/x) =z - (¢; + M;(1/x)), it is easily verified after some elementary algebra
that 2®;(1/z) = M} (1/x)/x®. Since MJ(1/x) > 0 for all z > 0 by assumption,
this implies that ®;(1/x) is strictly convex on (0, 00). O

3.4.2 Problem relaxation

In view of Lemma 1, it seems reasonable to rewrite problem (@) by transformation
of t into 7. By doing this, the objective function becomes a convex function in ¢,
which obviously is a useful property in finding the optimal preventive maintenance

cycle. In this alternative formulation, preventive maintenance on component j € J
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is carried out at integer multiples of k;/t time units. Here, k; € N* denotes the
maintenance period of component j € J relative to a basis interval of t ! > 0 time

units:

@)%%%{H&A%H+§%%m}

Let us now present a relaxation of problem (@), which enables us to construct a
lower bound for the optimal solution with the use of standard search techniques. As
a starting point, define scalars 0 < a;; < 1, such that Ziejj a;; =1forall j € J.
Here, a;; could be interpreted as the contribution of set-up activity ¢ € I; to the costs

of component j € J. Now, observe that the following relation holds:

S 0i(ki/t) =)0 i (ki) =) 0>y (ks /).

jeJ JjeJ icl; il jeJ;

With A C R7T", we denote the set of all such weights (a1, ..., umy). For each
a € A, this yields an alternative formulation for problem (@), in which the individual

costs of each component are divided among the corresponding set-up activities:

rgglkmell\rll* 2 { t+J€ZJ&w i (k;/t) }
To continue our analysis, we substitute ¢; = A;(k) - ¢ and observe that ¢; > t; if
i' € S;, since obviously A;(k) > Ay (k) if set-up activity ¢ € Z is a parent of set-up
activity ¢’ € Z. If we denote with 7 C R the set of feasible solutions to (t1, ..., %),
this yields the following lower bound for problem (Q):

rtrg? krjrgl\r%* {sz ti + Zaw Ai(k)/ti)} .
€T j€Jd;

Now we substitute k;; = k; - A;(k) and observe that k;; > 1 for all ¢ € Z and

j € J;, since Ay(k) > kj_l for all 7 € J; by definition. As before, this yields an

alternative lower bound for problem (Q):

o 4, 1 it
%%g,{ +2 0 ® M%
€L JjeJ;
For notational convenience, let us now define functions £;(¢) = min{®;(x/t) | z >
1} for all j € J. Since ®;(z) attains its minimum at 2} < oo, and ®;(1/z) is strictly
convex on (0,00), this yields a decreasing function in ¢, which is convex on (0, o),

and strictly convex on (0, 1/27):
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O;(1/t) ift<1/a

J

Q;(xx) ift>1/x3

J J

&;(t) = min{®;(z/t)} =

Since we are free to choose a € A arbitrarily, this finally leaves us with the
following lower bound for problem (). Obviously, this lower bound reflects a de-
composition into m interrelated subproblems, each corresponding with a single set-up

activity, and its adjacent components:

p S e o0
s

JjeJi

Our analysis now proceeds as follows. Since §;(t) is a decreasing function in ¢ for
all j € J, and t; > ty if i’ € §;, it can easily be verified that the optimal values of
a;; are determined as follows: a;; = 1if j € J, and a;; = 0 otherwise. Recall that
J: C J; denotes the set of components 5 € J that are attached to set-up activity
i € Z. Summarizing, this yields the following lower bound (R) for problem (Q):

(R) min siotit Yy &(t)

teT
ieT je;

Since s; - t; and §;(t;) are both convex functions in ¢;, and J; # @ for all 7 € T,
this leaves us with a convex programming problem in a convex search space 7 C R,
which can easily be solved to optimality with the use of standard search techniques.
Here, we applied the gradient projection method (Luenberger 1984). To this end,
we used the following initial values (67, ...,0;.) for (¢,...,t5,) in deriving the optimal

1
9: = Inax (-
jed; x5

It is easily verified that (67,...,6;,) € 7T, since obviously ¢ € S; implies that

solution to problem (R):

Jy C J;, and thus 07, < 0. Of course, other initial values might be preferred, e.g.
if they require a smaller number of iterations of the underlying gradient projection
method. Nevertheless, they will always result in the same lower bound, as is more

stated explicitly in the following theorem:

Lemma 3 There exists a unique solution (t3,...,t%) < (07, ...,0,,) to problem (R).
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Proof. First of all, suppose that ¢} > 67 for some i € Z, or equivalently ¢} > 1 /a;;‘
for all 7 € J;. Without loss of generality, we can assume that t; < 6 for all
i € S;. Since s; - 07 < s; - t7, and £;(07) = &;(t7) = () for all j € J;, it is
now immediately clear that (¢3,...,tF,...,t%) is outperformed by (¢,...,07,....t%), a
contradiction. Apparently, tf > 0, cannot be optimal, and thus ¢} < 6 for all ¢ € 7.
Because s; - t; + > jear £ j(ti) is strictly convex in ¢; for all ¢ € Z, this also implies the

uniqueness of (¢3,...,t* ), which completes the proof. O

3.5 An iterative heuristic for problem (Q)

In this section, we will present an iterative heuristic approach to solve problem (Q).
This approach is based on decomposition of problem (@) into two subproblems: one
that determines (ky, ..., k,) given ¢, denoted (Qy), and one that determines ¢ given
(k1, ..., k), denoted (Q:). As a starting point, however, we determine the optimal
solution (#%,...,t*) to problem (R), and initialize ¢ = ;. Subsequently, subprob-
lems (Qy) and (Q;) are solved iteratively, until no improvements are observed in two
consecutive iterations (see Figure 3.2). To a certain extent, this approach is simi-
lar to Goyal and Kusy (1985) and Goyal and Gunasekaran (1992), who developed
near-optimal solutions to the single set-up version of problem (@) without correction
factor. Nevertheless, it contains a variety of interesting elements which are typical
for our setting of multiple set-up activities with correction factors.

Simply stated, the initial choice ¢ = ¢} is based on the intuitive reasoning that
A;(k) = 1 in the optimal maintenance cycle, which on its turn implies that k; = 1
for at least one component 5 € 7. From a practical point of view, this relates to a
preventive maintenance cycle without empty maintenance opportunities. Of course,
other initial values for ¢ could lead to other, and possibly better solutions. Never-
theless, a series of numerical experiments carried out by Wildeman (1996) strongly
indicate that this approach is a promising one, at least in the single set-up version
of our problem (m = 1). In the following sections, we will show how problem (Q;)
can be solved to optimality with the use of standard search techniques. Moreover,

we will present two heuristics for problem (Q).

3.6 Optimization of problem (Q;)

If the (optimal) maintenance periods (k, ..., k,,) are known, it is possible to compute
the values of A;(k) beforehand for all 7 € Z. To be specific, if we denote with 7,(()
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Figure 3.2: Contribution of subproblems (R), (@Q:) and (Q%), as well as heuristics
(FSH) and (SSH), to the derivation of a lower bound (LB) and upper bound (UB)
for the optimal solution to problem (Q).

the number of empty maintenance opportunities [ € £ with K; = () in a maintenance
cycle with period set KC; = {k; | j € J;}, it is easily verified that the following relation
holds:
1;(0)
Ailk) =1 =10 K

After all, the maintenance cycle for set-up activity ¢« € Z repeats itself after each
lem(/C;) maintenance opportunities, of which n,(()) refer to empty ones. Hence, set-up
activity ¢ € Z must be carried out at lem(KC;) — 7,;(0) out of lem(/C;) maintenance
opportunities, which yield the desired result for A;(k). If we now denote with §; =
s - Ay(k) the costs associated with set-up activity ¢ € Z, problem (@) reduces to the

following optimization problem:
() min {Z Siot+ Yy ‘Dj(kj/t)}
i€l JjeT
Since §; -t and ®;(k;/t) are both convex in ¢, this leaves us with a one-dimensional

convex programming problem, which can easily be solved to optimality using standard

search techniques.

3.7 Heuristics for problem (Q;)

If the (optimal) maintenance interval 1/t is known, problem (@) reduces to the fol-

lowing optimization problem:
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(Qr) i {ZEI si - Ai(k) -t + jezjq)j(kj/t)}

In general, this problem is very difficult to solve, due to the unlimited choice of
maintenance periods k; € N*, as well as the complex underlying structure of the
correction factors A;(k). Under some special conditions, however, the complexity of
problem (@) can be reduced significantly. This is particularly true for the modelling
framework presented by Gertsbakh (1977), who reduces the set of possible mainte-
nance periods to {ai,a; - ag,...,a1 - ... - a,}, where a; (1 < i < p) are all positive
integers.

In this section, we will present two heuristics in which considerably more degrees
of freedom are taken into account. In the first heuristic, we restrict ourselves to
a finite set of consecutive maintenance periods K = {kmin, ---, kmax }- We solve this
problem to optimality by means of the mixed integer linear programming formulation,
that was designed for problem (P). In the second heuristic, we consider the case
where each set-up activity is carried out, and set-up costs s; > 0 are incurred, at
fixed intervals of k; /t time units. Subsequently, we show that this problem can be
solved to optimality by means of an efficient dynamic programming formulation. For
notational convenience, we will refer to these heuristics as the finite set heuristic
(FSH), and the structured set heuristic (SSH) respectively.

3.7.1 A finite set heuristic

In the finite set heuristic (FSH), each subproblem (Qy) is solved by means of the mixed
integer linear programming formulation, that was designed for problem (P). To this
end, the set of possible maintenance periods is reduced to K = {kuin, .-, kmaz }, Wwhere
kpmin and k,,.. are determined as follows. For each component j € J, we determine
j
would be charged. In a similar way, we also determine the optimal (individual)

the optimal (individual) maintenance interval z; > 0 if no preventive set-up costs

maintenance interval y; > 0 for each component j € J, if preventive set-up costs
> iez; 8i > 0 would be charged:

J x>0 €T

*_

Y;

arg min
y>0

Y

{ Dier, Si + ¢+ M;(y) }
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The finite set heuristic is now based on the (intuitive) reasoning that min{z} |
j € J} and max{y; | j € J} can be interpreted as a lower and upper bound on
the optimal maintenance interval for each component j € [J. More specifically, we
assume that the maintenance periods (7, ..., k%) in each optimal solution to problem
(Qr) will satisfy:

Fonin = min |- ¢] < min {k7} < max {k7} < max [y7 - 1] = Ko

As we shall see in the remainder of this chapter, we have had no indications (so
far) that these bounds are too tight (see section 3.9). Clearly, we could come up with
even weaker lower and upper bounds, but with respect to the efficiency of our MILP
formulation, this is certainly not desirable. Since M(-) is assumed to be strictly
increasing and convex on (0, c0), it follows from Lemma 1 that 0 < 2} < yj < oo for
all 7 € J, and thus 0 < Epnin < kimae < 00. Obviously, we do not allow k,,;, = 0, and
in that case set ki, = 1.

It is to be expected that the finite set heuristic becomes intractable when the set of
possible maintenance periods becomes too large, e.g. K = {1,...,25} with |£*| = 2880
maintenance opportunities. In that case, we suggest the use of other methods, which
more explicitly account for large fluctuations in the optimal maintenance intervals
r} and y; for different components. A typical example of this type is the so-called

structured set heuristic, as will be explained in more detail in the following section.

3.7.2 A structured set heuristic

In the structured set (SSH) heuristic, we restrict ourselves to the case where each
set-up activity ¢ € Z is carried out, and set-up costs s; > 0 are incurred, at fixed
intervals of k; /t > 0 time units. Here, k; € N* is a new decision variable representing
the maintenance period of set-up activity ¢ € Z. By doing so, it is immediately
clear that k; must be an integer multiple of k; (i.e. k;mod k; = 0) for all j € J;, and
ks must be an integer multiple of k; (i.e. kymod k; = 0) for all ¢/ € S;. Therefore,
an equivalent interpretation is to assume that the correction factors A;(k) can be
determined as follows:

1

) = S, [ € 7

Here, ged(ky, ..., kp) denotes the greatest common divisor of the integers kj...k,,
e.g. ged(6,9,12) = 3. It is easily verified that A;(k) < 1/ged{k; | j € J;} under all

circumstances. Hence, this expression for A;(k) is correct in case ged{k; | j € J;} =
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min{k; | j € J;}, since obviously A;(k) > 1/min{k; | j € J;} for all i € Z. In all
other cases, it serves as an upper bound. If each maintenance period must be chosen
from a finite set of possibilities {a, a; - ag, ..., a1 - ... - ap}, where all a; (1 < i < p)
are positive integers, it is obvious that ged{k; | j € J;} = min{k; | j € J;} under
all circumstances. In this respect, our approach provides a much richer and more
powerful modelling framework in comparison with the one presented by Gertsbakh

(1977). More specifically, it does so in each of the following dimensions:

e it is also possible to define components at each set-up activity in the mainte-

nance tree, and not at the lowest-level set-up activities only;

e it does not require a set of predetermined maintenance periods to choose from,
each of which is an integer multiple of all other but smaller maintenance periods;

e it always outperforms the optimal solution found by Gertsbakh (1977), irre-
spective of how much and which maintenance periods are used.

Now the structured-set heuristic proceeds in the following way. As a starting
point, we determine the optimal solution k; (j € J) to problem (Qj) with approx-
imate correction factors A;(k) = 1/ged{k; | j € J;}. To achieve this, we have
developed an efficient dynamic programming formulation, which is presented next.
Subsequently, we determine the actual values of A;(k) for each set-up activity ¢ € Z,
by using the same procedure that was used for solving subproblem (();) in section 3.6.
The reason for this is that A;(k) might actually be smaller than 1/ ged{k; | j € J;},
once the optimal values for k; (j € J) are known. In this respect, it could also be
interesting to repeat this procedure iteratively by defining a new approximate expres-
sion for A;(k), which explicitly accounts for the discrepancy between the predicted
and actual value. This procedure could be repeated until convergence in terms of
a steady state or limit cycle is observed. We have chosen not to incorporate this

iterative process, and to leave these suggestions for further research.

A dynamic programming formulation

In order to arrive at a dynamic programming formulation, let us denote with h;(k)
the immediate costs associated with the assignment of set-up activity ¢ € Z to main-
tenance period k € N*, given that all lower-level set-up activities i € S; must be
executed at integer multiples of k. Under the above-mentioned assumptions, this
yields A;(k) = 1/k, which on its turn leaves us with the following expression for

hi(k):
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() = 254 3 i (50 1/0))

jeJr o

Since ®;(z) is decreasing for < x7%, and increasing for x > 7, it is obvious that
either [; = |25 -t/k] or I} = [2}-t/k] for all j € Jf, and thus h;(k) can be determined
rather straightforwardly. To continue our analysis, we denote with g;(k) the minimal
costs of the subtree associated with set-up activity ¢« € Z, provided that it must be
assigned to an integer multiple of maintenance period k£ € N*, i.e. k; mod k = 0.
Then it is easily verified that g;(k) can be determined recursively by means of the

following dynamic programming formulation:

gi(k) =min { hi(k - 1)+ > gu(k-1)

1>1
€Sy

The problem in the above formulation is that, in order to determine g;(k), an
infinite number of alternative decisions [ > 1 must be evaluated. In the remainder of
this section, we will present an efficient procedure with which only a finite number
of alternatives I € {lyin, ---, lmax } needs to be evaluated. This procedures starts with
a promising, initial decision [*. Subsequently, it proceeds iteratively by gradually
increasing the set of possible decisions, until at some point we know for sure that all
decisions | < [, and [ > [, cannot be optimal. In the remainder of this section,

this approach will be discussed in more detail.

Bounds for the optimal decision

As a starting point, we determine the optimal solution to the relaxed version of
problem g;(k). Similar to (R), this yields a convex programming problem in a convex
search space, which can easily be solved to optimality with the use of standard search
techniques:

9i(k) = o Z Sir Tir F Z §;(Ta)
i {aJUS; jerr

The underlying observation behind this formulation is that set-up activity ¢ € Z
must be assigned to an integer multiple of maintenance period k£ € N*, and thus
A;(k) < 1/k is known in advance. Based upon the optimal value of 7; > 0 in this
relaxation, it is at least intuitively clear that {* = [t/(k - 7;)] is one of the most

promising decisions. Here, [x] € Z denotes the nearest integer relative to = € R,
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e.g. [1.2] =1 and [1.8] = 2. Therefore, and in line with the above, an upper bound
gi(k | L =1*) for g;(k) is determined with the use of dynamic programming;:

Gilk | 1) = halk 1)+ > gu(k-1)
i’eS;
Our analysis now proceeds by deriving a lower bound g;(k | I < I*) and g;(k |
[ > [*) for the remaining decisions [ < [* and [ > [*, by using a formulation which is
similar to ¢;(k). Here, we denote 7o, = 1/(k - (I* — 1)) and Tpax = 1/(k - (I* + 1))

for notational convenience:

gGik|l<l®)= TGT{rTliingm Z i Ty + Z &(Tv)
i'e{itus; JEJ;

B> 0= min S st 3 ()
i'e{itus; jeJ;r

The underlying observation behind these lower bounds is that we know for sure
that A;(k) > 1/(k- (I* — 1)) if I < I*, and that A;(k) < 1/(k- (I*+ 1)) if I > I*.
Obviously, g;(k | I < I*) > gi(k | I*) implies that decisions | < {* can as well be
neglected without affecting the problem. In a similar way, g;(k | I > 1*) > g;(k | I¥)
implies that decisions [ > [* can never lead to the optimal solution. In all other cases,
further investigations into decisions [ < [* and/or [ > [*are necessary. Under these
circumstances, the most promising of g;(k | I* — 1) and g;(k | I* + 1), in view of the
corresponding lower bounds g;(k | { < [*) and g;(k | I > I*), is determined with the
use of dynamic programming.

After each iteration of this procedure, upper bounds g;(k | ) have been derived for
a finite set of alternative decisions I € {lmin, -, lmax }, Where 1 < [ < 1* <. < 00.
Once again, it is now determined whether further investigation into decisions | < I,
or | > I is necessary. Since §;(k | I > lpax) — 00 a8 lmax — 00, this procedure will

terminate after a finite number of iterations.

An efficient procedure for §;(k), G;(k | | < lnm) and §;(k | 1 > lnax)

The question remains how to (efficiently) determine §;(k), g;(k | | < lnm) and
Gi(k | I > lmax) during the course of our dynamic programming algorithm. It is
easily verified from the underlying expressions, that it is sufficient to formulate an
efficient procedure, with which problems R;(«, 3) of the following type can be solved
to optimality:
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Ri(e,f)= _min > Sse-to+ ) &)
i e{i}us; jed;
The advantage of this more general formulation is that R;(«, ) has some nice

structural properties, which are stated more explicitly in the following lemma:
Lemma 4 R;(7,7) is convex on (0,00), and has a unique minimum 0 < 75 < 0;.

Proof. Following an analysis similar to Lemma 2, it is immediately clear that R;(7, T)
has a unique minimum 0 < 77 < 67. Moreover, Ri(7,T) = $iT+)_ ¢ ;- §;(7) Is convex
on (0,00) for each lowest-level set-up activity ¢ € Z with S} = @. The proof now
proceeds with induction on ¢ € Z. To this end, we need the following recursive
relationship for R;(a, 3), which more explicitly states that o < 7; < § and 74 < 7y
for all ¢/ € S;:

Ri(a,8) = min < s;-7; + Z §;(7i) + Z Ry(0,7;)

asTisp jeJ; €S

Now consider an arbitrary set-up activity ¢ € Z, and suppose that Ry(7,7) is
convex on (0, 00) for all lower-level set-up activities i’ € S;. Then Ry (0, 7) is convex
on (0, 00) for all ¢/ € S}, almost by definition, and thus R;(7,7) = si~7'—|—zj6]; §;(1)+
Yo 50 R (0,7) is also convex on (0, 00). This completes the proof. O

Summarizing, R;(a, 3) and thus g;(k) = R;(0,t/k), gi(k | I < lpin) = Ri(Tmin, 0)
and §;(k | | > lmax) = Ri(0, Tmax) can be determined recursively, provided that the
optimal solutions 7} > 0 to the optimization problems (R;) ~ R;(0, c0) are known in

advance:
(si~a—i—Z§j(a)+ZRi/(O,a) ifrf<a<p
JET; i'eS:
Ria.f) =14 si-mi+ X &0+ X Ro(0,7)  ffa<ri<p
jed; i'esy
Si'ﬂ+Z§j(ﬁ)+ ZRi’(Oaﬁ) ifa<pg<7;
\ jeJ: Sy

From this recursive formulation, it is immediately clear that only |S;|+ 1 multipli-
cations and |J;| function evaluations are required to determine R;(«, 3), for arbitrary
values of a and 3. Of course, this is an extremely useful property from a computa-
tional point of view. The question remains how to determine 77 > 0 for each set-up
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Figure 3.3: Example of a test problem consisting of 5 set-up activities and 5 com-
ponents. Set-up and maintenance costs s; and ¢; are shown at the arcs, deterioration

cost parameters a; and b; in brackets at the corresponding nodes.

activity ¢ € Z. Similar to (R) = (R;y), each (R;) is a convex programming problem in
a convex search space, which can easily be solved to optimality with the use of stan-
dard search techniques. Given the optimal solution (¢, ...,t%) to problem (R), it is
now immediately clear that t; > t} for some ¢ € 7 and ¢ € S} implies that 75 = ¢}.
In a similar way, mutual relationships can be derived for the optimal solutions to
problems (R;) and (R ), where i € Z and i’ € S}. Further details are skipped, since

they are not so relevant for what follows.

Characteristics of the optimal decision

Of course, it depends on the tightness of these lower bounds, as well as the charac-
teristics of the problem under consideration, how much alternative decisions must be
evaluated in each decision problem g¢;(k). Nevertheless, computational results within
a variety of (large) test problems (see section 3.9) showed that only one decision was
needed in approximately 97.8% of all test problems. In the remaining 2.2% of all
other test problems, exactly two decisions were required. Finally, three alternative

decisions had to be evaluated in approximately 0.01% of all cases.
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Table 3.3: Parameter settings for the numerical example of Figure 3.3.

i, ] S; a; b; ¢ r; y; 0; tf TS
1 59 41 4 102 0.909 0.996 1.100 1.004 1.004
2 37 16 4 127 1.147 1.284 0.872 0.828 0.828
3 75 24 5 392 1.218 1.294 0.821 0.797 0.797
4 7 31 1 387 3.533 3.823 0.283 0.280 0.280
5 75 11 1 240 4.671 5.885 0.214 0.187 0.187

We conclude this section by observing that the optimal decision to subproblem
gi(k) often contains useful information for other subproblems g;(k'), where k' > k.
More specifically, if we denote with [(k) > 1 the optimal decision for subproblem
gi(k), it is immediately clear that [}(k) = p-q > 1 for some p,q > 1 implies that
I}(p- k) =qand [}(q- k) = p. After all, if the optimal maintenance period equals 4
provided that it must be an integer multiple of 2, then it also equals 4 if it must be an
integer multiple of 4. Of course, this nice structural property was further exploited

during the implementation of our dynamic programming algorithm.

3.8 Numerical example

Consider a production system consisting of m = 5 set-up activities and n = 5 compo-
nents, as shown in Figure 3.3. For each component j € 7, we consider a deterioration
cost function M;(+) of the following form M;(z) = a; - 2%, where a; > 0 and b; > 0
are strictly positive constants. The costs s; of set-up activities ¢ € Z, as well as the
parameters (aj;, b;, ¢;) for components j € J, are depicted in Figure 3.3. Moreover,
the corresponding values of 7 and y; for each component j € 7, as well as the values
of 07, tf and 7} for each set-up activities ¢ € Z, are summarized in Table 3.3.

As a starting point, our iterative heuristic determines the optimal solution to
problem (R). This yields t; = 1.004, t5 = 0.828, t§ = 0.797, t; = 0.280, and
t: = 0.187, with corresponding lower bound 1157.42. Subsequently, we initialize ¢t =
1.004, and subproblems (Qx) and (Q;) are solved repeatedly, until no improvements
are observed in two consecutive iterations. The results of this iterative process for
both heuristics are depicted in Table 3.4.

Clearly, the finite-set heuristic generates a maintenance cycle of lem{1,3,5}/t =
15/0.859 ~ 17.46 time units. Within this maintenance cycle, total maintenance
costs amount to 17.46 - 1176.36 ~ 20542 on average, whereas preventive set-up costs
equal 15 - {59+ 37+ 75 + 1—75 -7+ £ 75} = 2839, i.e. approximately 13.8% of total
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Table 3.4: Consecutive iterations of the finite-set heuristic (FSH), and the

structured-set heuristic (SSH), for the numerical example of Figure 3.3.

t {k1, ..., ks} {Ay, ..., A5} costs
(Qr) 1.004 {1,1,1,4,6} {1,1,1,3, ¢ 1216.10
(Qy) 0.878 {1,1,1,4,6} {1,1,1,4,% 1186.78
(FSH) (Qr) 0.878 {1,1,1,3,5} {1,1,1, 175, ; 1177.34
(Qy) 0.859 {1,1,1,3,5} {1,1,1, % 5 5 1176.36
(Qr) 0.859 {1,1,1,3,5} {1,1,1, £, 3 1176.36
(Qr) 1.004 {1,1,1,4,6} {1,1,1,4,%} 1217.27
(Q)) 0.878 {1,1,1,4,6} {1,1,1,3,E 1187.81
(SSH) (Qr) 0.878 {1,1,1,3,6} {1,1,1,3, ¢ 1179.80
(Qy) 0.864 {1,1,1,3,6} {1,1,1,3,6 1179.28
(Qr) 0.864 {1,1,1,3,6} {1,1,1,3, ¢ 1179.28

maintenance costs. Similarly, the structured-set heuristic generates a maintenance
cycle of lem{1,3,6}/t = 6/0.864 ~ 6.94 time units. Within this maintenance cycle,
total maintenance costs amount to 6.94-804.29 ~ 8189 on average, whereas preventive
set-up costs equal 6- {59+ 37+ 75+ 35 -7+ -75} = 1115, i.e. approximately 13.6% of
total maintenance costs. Moreover, the guaranteed performance of the finite-set and
structured-set heuristic, i.e. the maximal deviation with respect to the lower bound,

equals only 1.64% and 1.89% respectively.

3.9 Computational results

In this section, we will discuss the results of a series of numerical experiments, that
were carried out to investigate the performance of both heuristics. To be specific, we
tested our heuristics on several test problems, in which the number of set-up activities,
the number of components, and the corresponding costs were varied randomly. In
order to avoid that A;(k) = 1 for all ¢ € Z as much as possible, we chose to attach
exactly one component to each set-up activity, i.e. |[Jf| = 1 for alli € Z. As a
consequence, the number of set-up activities equals the number of components in each
test problem. Moreover, set-up activities were attached to each other by choosing
the parent of set-up activity ¢ € Z randomly among set-up activities {1,...,7 — 1}. Tt
is easily observed that this procedure allows for each possible set-up structure that
can be thought of.
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Table 3.5: Computational results for the finite-set heuristic (FSH) and the
structured-set heuristic (SSH), based on 1000 randomly generated test problems with
m=mn=>5,s; € (1,100), a; € (100,500), b; € (10,50) and ¢; € (1,5).

finite-set heuristic structured-set heuristic

minimal average maximal minimal average maximal

# iterations 3 3.31 7 3 3.31 7
CPU time (s) 0 2.95 16 0 0.01 1
performance (%) 0.01 2.03 9.56 0.01 2.04 9.56
interval length 0.83 1.24 3.14 0.83 1.24 3.14

cycle length 1.09 5.03 78.18 1.09 5.02 78.18

3.9.1 Small test problems

First of all, we investigated the performance of both heuristics for a series of small
test problems, that could be solved by both heuristics within reasonable computation
times. Obviously, this required the number of maintenance opportunities |£*| in the
mixed integer linear programming formulation not to become too large. In each test
problem, this was achieved by defining m = 5 set-up activities and n = 5 components,
and by choosing s;, a;, b; and ¢; in such a way that the corresponding values of z}
and y; were not subject to extreme fluctuations. To be specific, the costs of set-
up activities i € Z were drawn at random from s; € (1,100), whereas the costs of
component j € J were drawn at random from a; € (100,500), b; € (10,50), and
¢; € (1,5). Under these conditions, it could be shown that 0.85 < 27 < 7.08 and
085 <y; <10forallj € J.

In each test problem, we administrated the computation time and number of iter-
ations needed by the finite-set and structured-set heuristic. Moreover, we calculated
the relative performance of both heuristics in terms of the deviation with respect to
the lower bound. Finally, we took a closer look at the solutions found, in terms of the
interval length 1/t, and cycle length lem(ky, ..., k,)/t. From the results in Table 3.5,
we conclude that the differences between the finite-set and structured-set heuristic
are in general very small. In fact, a closer look at the results showed that both heuris-
tics generated identical maintenance cycles in 988 out of 1000 test problems. In the
remaining 12 test problems (see 3.6), the finite-set heuristic always outperformed the
structured-set heuristic, with a maximum of 0.70%. With respect to the (guaranteed)
performance of both heuristics, we claim that an average deviation of 2.04% from the
lower bound is quite satisfactory. After all, one must realize that this deviation also
includes the gap between the lower bound and the optimal solution.
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Table 3.6: Computational results for 12 out of 1000 test problems in which the

finite-set and structured-set heuristic generated different solutions.

finite-set heuristic structured-set heuristic
t* {ki,..., K} {AY, ..., AL} t* {ki,..., K} {A, .. A;}
0.94 {1,4,3,2,1} {1, 4,§ 1} 0.95 {1,4,4,2,1} {1,1 e 2, 2, 1}
1.04 {1,1,4,2,3} {1,1,%, } 0.91 {1,1,3,1,2} {1,1,1,1, 2}
1.13 {1,1,2,3,2} {1,1,2 } 1.11 {1,1,2,2,2} {1,1,27272
st
}

0.89  {1,2,1,1,3} {1,2,1, 090  {1,2,1,1,4}  {1,1,1,1,3}
0.99  {1,3,2,1,1} {1,%,3, 097  {1,2,2,1,1} {1,2,2,1,1}

0.71 {1,2,1,3,1} {1,2,1,1 1} 0.74 {1,3,1,3,1} {1,3, ,3, 1}

») 394y 3
0.85  {1,1,3,2,2} {1,1,2,1,4 093  {1,1,2,2,2}  {1,1,3,3,3

0.86  {1,1,1,3,5}  {1,1, 1, L,3 0.86  {1,1,1,3,6}  {1,1,1,%,%}
0.76  {1,1,2,3,3} {1,1,% §§} 074 {1,1,2,3,2}  {1,1,3,%,3
091  {1,1,1,3,2} {1,1,1,2,1 0.89  {1,1,1,2,2} {1,1,1,2,5
0.86  {1,3,1,2,1} {1,%,1,%,1} 087  {1,4,1,2,1}  {1,1,1,3,1}
0.87  {5,3,2,1,3} {1,1,2,1,3 089  {5,3,2,1,4}  {1,1,5,1,3}

3.9.2 Large test problems

As mentioned before, the finite-set heuristic (FSH) becomes inattractive, or even
intractable, if the set of possible maintenance periods becomes too large, e.g. K =
{1,...,100}. In that case, we have to use the structured-set heuristic (SSH), in order
to obtain reasonable solutions within acceptable computation times. To this end,
we carried out another series of 1000 test problems, but this time with m = 25
set-up activities and n = 25 components. In each test problem, the costs of set-up
activities ¢ € Z were drawn at random from s; € (1,1000). Moreover, the costs
of component j € J were chosen randomly from a; € (1,1000), b; € (1,100), and
¢j € (1,10). Under these conditions, it could be shown that 0.10 < 2} < 31.62 and
0.14 < y; < 161.25 for all j € J, which clearly complicates the problem.

From the results in Table 3.7, it can be observed that the computation time and
number of iterations needed by the structured-set heuristic have increased. Nev-
ertheless, they did not grow explosively with the size and complexity of the test
problems under consideration. This is a potentially valuable insight, since the lat-
ter implies that large test problems can be tackled by our dynamic programming
algorithm within reasonable computation times. On the other hand, the length of
the corresponding maintenance cycle increased significantly, whereas the performance
decreased slightly. Although these observations were to be expected, we claim that
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Table 3.7: Computational results for the structured-set heuristic (SSH), based on
1000 randomly generated test problems with m = n = 25, s; € (1,1000), a; €
(1,1000), b; € (1,100) and ¢; € (1,10).

minimal average maximal
# iterations 3 4.96 13
CPU time (s) 0 0.30 1
performance (%) 0.68 3.39 18.32
interval length 0.80 1.13 1.26
cycle length 1.16 47.59 1917.58

an average deviation of 3.39% from the lower bound is also quite satisfactory for
practical purposes. Once again, a significant part of this deviation may be due to the

deviation between the lower bound an the optimal solution.

3.10 Concluding remarks

In this chapter, we presented a variety of optimization techniques which can assist
maintenance planners in the design of (near-)optimal preventive maintenance cycles,
for a multi-component production system with multiple interrelated set-up activities.
To this end, a powerful modelling framework was presented, in which each component
is maintained preventively at integer multiples of a certain basis maintenance interval,
which is the same for all components. For a given basis maintenance interval, we
developed a mixed integer linear programming as well as a dynamic programming
formulation, which can be used to determine an (optimal) maintenance period for
each component.

Subsequently, these methods were incorporated in an iterative heuristic approach,
which can be applied if the basis maintenance interval is also free to choose. Based
on a series of 1000 randomly generated (small) test problems, we concluded that
the difference between both methods is in general very small, and that the dynamic
programming formulation should be preferred for its efficiency. Besides, another
series of (large) test problems pointed out that this approach generates near-optimal
solutions within reasonable computation times, even for production systems with a
large number of set-up activities and/or components.

Summarizing, we claim that the problems addressed in this chapter have been
solved satisfactorily by our methods. It is not difficult, however, to come up with

a number of promising extensions to our modelling framework. As a starting point,
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the model discussed here might be classified as an additive one, i.e. the costs of
maintaining a certain group of components are modelled as the sum of the individual
costs for each component. There are situations, however, where time is the most
crucial and expensive factor. In such cases, it would also make sense to model the
time required for a certain group of components as the maximum of the individual
times required for each component. Of course, it would be interesting to develop a
good working algorithm for such cases.

Within our modelling framework, we assumed - without loss of generality - that
each component is maintained preventively at the end of each maintenance cycle. As
a consequence, the peak workload associated with this maintenance cycle may be sig-
nificantly larger than is strictly necessary. In this respect, it might also be worthwile
to investigate the possibilities for adjusting the maintenance cycle, such that the peak
workload is minimized, but overall maintenance costs are not affected. For similar
reasons, there is a potential of challenging optimization problems if the maintenance
cycles of different production systems are combined into an overall maintenance cycle,
in which the peak workload for the maintenance department is minimized.

Finally, it would be interesting to include the possibility of frequency-constrained
maintenance jobs, or equivalently components that must be maintained preventively
at prescribed or smaller intervals (see previous chapter). Within our modelling frame-
work, these frequency constraints could be incorporated implicitly, by adjusting the
individual deterioration cost function of these components. Moreover, they could be
modelled explicitly, by defining a set of feasible maintenance intervals and/or main-

tenance periods within each of the algorithms discussed in this chapter.
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Chapter 4

Preventive maintenance and the interval
availability distribution of an unreliable

production system

Traditionally, the optimal preventive maintenance interval for an unreliable
production system has been determined by maximizing its limiting availabil-
ity. Nowadays, it is widely recognized that this performance measure does not
always provide relevant information for practical purposes, and the so-called in-
terval availability distribution is often seen as a more appropiate performance
measure. Surprisingly enough, the relation between preventive maintenance
and interval availability has received little attention in existing literature. In
this paper, a series of mathematical models and optimization techniques is
presented, with which the optimal preventive maintenance interval can be de-
termined from an interval availability point of view, rather than from a limiting
availability perspective. Computational results for a class of representative test
problems indicate that significant improvements of up to 30% in the guaran-
teed interval availability can be obtained, by increasing preventive maintenance

frequencies somewhere between 10% and 70%.

4.1 Introduction

In studying the performance of an unreliable production system, the limiting avail-
ability does not always provide the most relevant information for practical purposes.
For example, the amount of gas to be delivered over a finite period of time is often
contractually guaranteed in the oil industry (Aven 1993). Although short interrup-
tions of the production process can usually be covered by inventory backups, a loss
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Figure 4.1: Production systems with similar limiting availabilities, but different

interval availability distributions.

of production for several consecutive days might cause problems in meeting the sales
contract, involve high penalty costs, and - in the worst case - loss of goodwill or
even customers (Van Rijn and Schornagel 1987). In computer and manufacturing
systems, the guaranteed performance during a finite period of time is sometimes a
more important and even competitive factor, than the average performance observed
over an infinite horizon (Goyal and Tantawi 1988). In this respect, the interval
availability of a production system is often seen as a more appropiate performance
measure in a practical context. This is particularly true for order-driven manufac-
turing systems, in which capacity planning plays a key strategical role in satisfying

contractual obligations.

Most capacity planning tools used in industry account for random outages by
computing average capacity in terms of limiting availability. By doing so, it is im-
mediately clear that during a given period of time (e.g. a week), capacity problems
will occur in approximately 50% of all cases. Since this is generally not acceptable,
a safety margin is usually build in, in order to ensure satisfactory capacity in e.g. at
least 95% of all cases. However, even if this works well in practice, it underlines the
point that thinking in terms of the guaranteed capacity of a production system during
a finite period of time, is often more appropriate than thinking about its average ca-
pacity in the long run. In this respect, a production system with frequent, predictable
and short interruptions is to be preferred above one with infrequent, unpredictable
and long interruptions, all other things being equal (see Figure 4.1). This is a po-
tentially valuable insight, since random breakdowns are one of the major sources of

variability.
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During the last decades, this and other factors have resulted in an increased pop-
ularity of mathematical models for reliability and maintenance optimization, e.g. see
McCall (1965), Pierskalla and Voelker (1976), Sherif and Smith (1981) , Valdez-Flores
and Feldman (1989), Cho and Parlar (1991) and Dekker et al. (1997) for extensive
literature reviews. At the same time, a growing interest could be observed in mod-
elling the short term behavior of production systems, in terms of the so-called interval
availability distribution. The reader is referred to Smith (1997b) for a comprehensive
and up-to-date survey on existing literature. Surprisingly enough, the interactions
between preventive maintenance on the one hand, and interval availability on the
other hand, have received little attention in existing literature, possibly because of

the inherent mathematical complications.

If a production system is repaired at failure, and thus all maintenance is corrective,
consecutive up (life) and down (repair) times are usually modelled as stochastically
independent random variables. Obviously, this modelling assumption cannot be sus-
tained if preventive maintenance is carried out at regular intervals. In that case,
consecutive up and down times become mutually dependent random variables, since
small up times (due to failures) are usually followed by large down times (due to
repairs), and vice versa. Obviously, this phenomenon does not make life easier from
a mathematical point of view. But even for a two-state production system without
preventive maintenance, i.e. with alternating and mutually independent up and down
times, closed-form solutions for the interval availability distribution are not available.
Pioneering work on this subject was carried out by Takdcs (1957), who derived an
analytical expression consisting of an infinite summations of terms, each consisting
of multiple convolutions of the life and repair time distributions. Since then, several
authors have tried to find reasonable approximations, as well as lower and upper
bounds for the interval availability distribution, e.g. see De Souza e Silva and Gail
(1986), Van der Heijden (1987), Van Rijn and Schornagel (1987), Van der Heijden
and Schornagel (1988), De Souza e Silva and Gail (1989), Wartenhorst (1993), Csenki
(1995), Haukaas and Aven (1996) and Smith (1997a).

Up to our knowledge, the derivation of analytical expressions for the interval
availability distribution of a two-state production system, which is maintained pre-
ventively at regular intervals according to an age replacement strategy, has not been
subject of any study in existing literature. Only Schibe (1996) considers a somewhat
similar problem, in which the time between two consecutive preventive maintenance
actions is modelled as a random variable with known distribution function. In gen-
eral, this yields a much simpler modelling framework, since the initiation of preventive

maintenance does not depend on the state of the underlying production system.
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4.2 General approach

Consider an unreliable production system which is repaired upon failure, and main-
tained preventively as soon as 6 > 0 time units have elapsed since the last main-
tenance action, either preventive or corrective. After preventive and/or corrective
maintenance, the system can be considered as good as new. The time to failure or
lifetime L of the production system is described by a cumulative distribution func-
tion F'(.), with probability density function f(.), and corresponding mean p; > 0 and
variance o2 > 0. Moreover, the preventive maintenance time P is described by a cu-
mulative distribution function G(.), with mean pp > 0 and variance 0% > 0. Finally,
the corrective maintenance (repair) time R is described by a cumulative distribution
function H(.), with mean pup > 0 and variance 0% > 0. As in most maintenance
optimization models, we assume that both L, P and R are mutually independent

random variables.

4.2.1 Limiting availability

The limiting availability A, is defined as the fraction of time that the production
system is operational (up), if observed over an infinite period of time. If we denote
with T}, a continuous period of time during which the system is operational, and
with Tyown a continuous period of time during which the system is not operational,
then it follows from renewal theory (Cox 1962) that the limiting availability A, is
determined as:

_ E{Tuwp}
- E{Tw} + E{Tuown}

Aoo

Depending on the length of the preventive maintenance interval § > 0, the
following expressions can be derived for E{T,,} and E{Tjmum}. Here, we denote

F(6) =1 — F(f) for notational convencience:

E{T,,} = 0-T(6) + / e f(r) dr

E{Tuown} = pp - F(0) + pig - F(0)

If & — oo, this yields E{T,,} = pr, E{Tuown} = 1y, and thus A = p, /(@ +
tg). Traditionally, the optimal preventive maintenance for a production system has

been determined in view of maximizing its limiting availiability. Unfortunately, this
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performance measure does not always provide sufficient and relevant information for
practical purposes. Sometimes, the so-called interval availability is seen as a more

appropiate performance measure.

4.2.2 Interval availability

The interval availability is defined as the fraction of time that a production system is
operational during a given time interval of finite length. Of course, it depends on the
initial state of the system at the beginning of this interval, which type of behavior
will be observed. From now on, we will assume - without loss of generality - that the
production system starts as new at time ¢t = 0. If we denote with U; the cumulative
up time during the interval [0, ], then the interval availability A; during this interval
is defined as follows:

At:%
t

With T,, = inf{t | Uy > u}, we denote the time required to attain a cumulative
up time of u time units. Since both U; and T, are random variables, we are mainly
interested in their cumulative distribution functions P(U; < u) and P(T, < t). By
observing that P(U; > u) = P(T,, <), it is sufficient to determine either P(U; < u)
or P(T, <t). Up to our knowledge, and for no specific reason, mathematical models
for the interval availability distribution have always been formulated in terms of U,
rather than T,,. From a theoretical point of view, however, the cumulative distribution
function P(T, < t) is to be preferred, since the corresponding analytical expressions
are mathematically more tractable (see the next section).

To avoid confusion, we will refer to P(U; < u) as the interval availability distrib-
ution, and to P(T, < t) as the availability interval distribution. Simply stated,
P(T, < t) reflects the probability of completing a cumulative workload of u time
units within ¢ units of calendar time. Nowadays, this performance measure could be
of considerable interest in e.g. due date determination and order acceptation, since
it may provide useful information about the probability that a certain amount of
workload will be completed within a certain amount of time.

As an illustrative example, consider a customer order of 10 hours processing time
which must be completed within 3 days. Moreover, suppose that already 50 hours of
workload have been accepted for other customers, with their own due dates as well.
In case of a first-in-first-out (FIFO) service discipline, which is completely natural in
such a setting, this would imply that on-time delivery of this new customer order can
be realized with probability P(T50110 < 3-24) = P(Tg < 72). Of course, it is up
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to management to decide whether or not this is acceptable. Nevertheless, our model
could provide useful decision support in this respect. Moreover, it could also be used
to explore the the opportunities for, and consequences of changing priorities between

customer orders.

4.2.3 Outline

As a starting point, we investigate the initial behavior of the system in section 4.3.
To be specific, an analytical expression is derived for the probability Py(T, < t) of
at least u units of cumulative up time during the interval [0,¢]. Subsequently, we
investigate the limiting behavior of the production system in section 4.4, by deriving
an analytical expression for the probability P, (T, < t) of at least u units of cumula-
tive up time during an arbitrary interval of length ¢ > 0 in a stabilized situation. In
section 4.5, some explicit formulas are derived for a production system with Gamma
distributed repair and fixed maintenance times. Moreover, a simple but efficient
algorithm is presented with which the optimal maintenance interval can be deter-
mined to a sufficient level of detail. Subsequently, a series of numerical experiments
is presented in sections 4.6 and 4.7. Computational results indicate that significant
improvements can be obtained in practice, if the optimal preventive maintenance in-
terval is determined from an interval availability rather than a limiting availability
point of view. Finally, section 4.8 summarizes some conclusions, and identifies some

opportunities for further research.

4.3 Initial behavior of the system

As a starting point, we consider the case where the production system starts with
an up time at time ¢ = 0, and preventive maintenance is carried out as soon as
the system has been operational (up) for > 0 time units. In this respect, a clear
distinction must be made between the case v > 6, and the case u < 6, since the latter

requires much simpler modelling techniques.

4.3.1 Model without preventive maintenance (u < )

If the required cumulative up time u < 6, it is immediately clear that no preventive
maintenance actions will be involved. As a consequence, all maintenance (if any)
will be corrective, and our analysis becomes similar to the well-known failure-based

model (Takdcs 1957). Since life times L and repair times R are stochastically inde-
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pendent random variables, with corresponding cumulative distribution functions F'(.)
and H(.), this yields the following expression for Py(T, < t):

o(Ty < ) ZH (t—u) {Fo(u) = Foyi(u)}

Here, F,,(.) and H,(.) denote the n- fold Stieltjes Convolutions of F(.) and H(.) re-
spectively, i.e. Fi(u) = F(u) and F,(u) = [, f —v) dv. More specifically,
F,(u) — F1(u) denotes the probablhty of exactly n fallures during the first u units
of cumulative up time, whereas the accumulated down time of these failures does not
exceed the amount of ¢ — w time units with probability H,(f — u). Obviously, this
analysis cannot be sustained as soon as subsequent up and down times become mutu-
ally dependent random variables. Of course, this happens if preventive maintenance
is carried out at regular intervals. In that case, the correlation between consecutive
up and down times usually drops below zero, since typically small (corrective) up
times go together with large (corrective) down times, and large (preventive) up times
go together with small (preventive) down times. Here, the correlation p(Typ, Thown)

between consecutive up and down times is defined as follows:

p( Td . E{Tup Tdown} E{Tup} E{Tdown}
up own - \/

E{ } E{Tup}2 \/E{ down}_E{Tdown}2

With E{T,,} and E{Tyowm} as defined earlier, p{T\p, Tiown} can be determined
straightforwardly by observing that analytical expressions for E{T,p - Tuoun}, E{T,},
and E{T3 .} are also readily available:

0

E{T“p'Tdow”}:e'ﬂP'F(e)+/T'NR'f(T) dr
0

B{T2} = 6* F(0) + / 2 f(r) dr

E{T o} = (e + 0p) - F(0) + (1 + 0%) - F(0)

An illustrative example for this phenomenon is presented in Figure 4.2, which
depicts the correlation between consecutive up and down times in a production system
with Gamma distributed life times (u; = 40, o = 10), repair times (up = 15,
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correlation of up and down times

preventive maintenance interval

Figure 4.2: Correlation between consecutive up and down times in a production
system with Gamma-distributed life, repair, and maintenance times, as a function
of the preventive maintenance interval (example with p;, = 40, o, = 10, up = 5,

op=1, up=15and o = 5).

or = 5), and maintenance times (up = 5, op = 1), for a variety of preventive
maintenance intervals. Apparently, the correlation between consecutive up and down
times reduces to zero as the preventive maintenance interval goes to zero or infinity.
This is intuitively clear, since a fully preventive or corrective maintenance strategy
should lead to independent up (life) and down (maintenance or repair) times. On the
other hand, if the preventive maintenance interval is close to the expected life time
of the production system, the correlation between consecutive up and down times
becomes relatively large. Simply stated, this phenomenon is caused by the fact that
in this range, the uncertainty with respect to the occurence of either preventive or
corrective maintenance actions, attains its highest possible level.

4.3.2 Model with preventive maintenance (u > 0)

If the required cumulative up time satisfies v > 6, our analysis proceeds as fol-
lows. First of all, we determine the probability fg(m,n) of exactly m preventive

maintenance actions and n corrective maintenance actions during the first u units
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of cumulative up time. Obviously, not all values of m and n correspond to non-zero
probabilities £2(m, n). As a starting point, since each preventive maintenance action
corresponds to exactly # units of up time, the number of preventive maintenance
actions m should at least satisfy m - 6 < u. Moreover, since each corrective main-
tenance action corresponds to at most # units of up time, the number of preventive
and corrective maintenance actions m + n should also satisfy (m +n+1) -0 > w.

In all other cases, it is possible to derive an analytical expression for &2 (m,n).
By the complete randomness of consecutive maintenance actions, i.e. preventive
with probability () and corrective with probability F(), the probability &2 (m,n)
must be equal to (m;;”) times the probability that exactly m consecutive preventive
maintenance actions are followed by exactly n consecutive corrective maintenance
actions within the first « units of cumulative up time. If we denote with F(t) = P(L <
t | L <60)=min{l,F(t)/F(0)} the conditional cumulative lifetime distribution
function, this yields the following expression for £°(m,n). Here, [,(.) denotes the
n-fold Stieltjes convolution of F(.), i.e. Fi(z) = F(z), and F,(x) = IS f(W) Foy(z—
y) dy for all n > 1:

Fo(lu—m-6)—

(
gulm,n) = (") - F(O)" - F(O)" -4 F(0) F,

m

| (u—m-0)—
FO)- - E,(u—(m+1)-0)

The first term between curly brackets reflects the probability that the first m
preventive and n corrective maintenance actions are completed within the first « units
of cumulative up time. Similarly, the second and third term reflect the probability
that the next i.e. m+mn-+ 1% maintenance action, which is preventive with probability
() and corrective with probability F(#), is also completed within the remaining up
time. Together, these terms denote the probability that the first « units of cumulative
up time are attained somewhere between the m-+n® and the m-+n+ 1% maintenance
action, provided that the first m maintenance actions are preventive and the following
n maintenance actions are corrective. For notational convenience, and without loss
of generality, we will use the notation of fg(m, n) in deriving analytical expressions
for Py(T, < t) in the sequel.

4.3.3 Stochastic repair and stochastic maintenance times

Given the number of preventive maintenance actions m and corrective maintenance
actions n, observed with probability fg(m, n), the corresponding down times do not

accumulate to more than ¢ — u time units with probability G,, o H,(t — u). Here,
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GoH(z) = [ g(y) - Hx — y) dy denotes the well-known Stieltjes convolution for
computing the sum of independent stochastic variables. Summarizing, this yields the
following expression for Py(T, < t):

Py(T, <t)= Z E(m,n) - Gy o Hy(t —u)
m-0<u<(m+n+1)-0
Following a similar argument, the first and higher moments of 7T, can be derived
in a rather straightforward manner, as long as the corresponding moments of the
maintenance and repair time distributions are available. For example, the first two
moments of T;, — u, given that the system starts with an up time at time ¢t = 0, are
determined as follows:

Eo{T, —u} = > Ealm,n) - {m - pp +n- pg}
m-0<u<(m+n+1)-0

BT —wPh= Y &mn) - {meoh b ohot mepp e )}
m-f<u<(m+n+1)-0

From the transparancy of these expressions, it is immediately clear that the cal-
culation of Py(T, < t) for different values of ¢, is to be preferred above the calculation
of Py(U; < u) for different values of u, at least in view of the inherent mathematical
complications. Nevertheless, mathematical models for the interval availability distri-
bution have always been formulated in terms of U, rather than T,, at least up to
our knowledge of existing literature. The main reason for this is that the interval
availability distribution is formally defined as Py(U; < u), and not as Py(T,, <t). To
avoid confusion, we will refer to Py(T,, < t) as the availability interval distribution,

rather than the interval availability distribution.

4.3.4 Stochastic repair and deterministic maintenance times

If the time required for preventive maintenance is fixed (cp = 0), the number of
preventive maintenance actions m must satisfy m - pp <t —w. In that case, G,, o
H,(t —u) = H,(t —u —m - up), and thus an alternative expression can be derived
for Py(T,, < t):

(T, <t) = Z Ea(m,n) - Hy(t —uw—m-pp)

m-0<u<(m+n+1)-0
m-pup<t—u

If no failures occur during the first u units of cumulative up time, the number

of preventive maintenance actions equals [u/6 — 1] with probability one. Moreover,
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IV |€--

Figure 4.3: Possible states of the production system: preventive up time (k = 1),

corrective up time (k = 2), preventive down time (k = 3) and corrective down time

(k = 4).

we know for sure that the corresponding down times accumulate to [u/0 — 1] - pp
time units. Since each maintenance action is preventive with probability F(6) and
corrective with probability F'(f), this yields the following additional and a priori

information with respect to the cumulative distribution function Py (T, < t):
Py(T, =u+[u/0 —17 - pp) = F(O)'~U . Flu— [u/§ —1] - 6)

A typical example of deterministic maintenance times, but stochastic repair times,
can be found in the replacement of single components and/or complete (sub)systems.
In general, preventive replacements require a fixed amount of time, since they are
perfectly plannable. Corrective replacements, however, often require an additional
waiting time, since the required resources are not always readily available on request.

4.4 Limiting behavior of the system

In this section, we consider the case where the production system starts in an arbitrary
state at time ¢ = 0, and preventive maintenance is carried out as soon as the system
has been operational (up) for § > 0 time units. As a starting point of our analysis,
we observe that the following situations can occur (see Figure 4.3):

(1) the system starts in a preventive up time,
(2) the system starts in a corrective up time,
(3) the system starts in a preventive down time,

(4) the system starts in a corrective down time.

Here, a preventive (corrective) up time is defined as a continuous period of time

during which the system is operational (up), and which is terminated by a preventive
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(corrective) maintenance action. This distinction will appear to be convenient when
deriving expressions for the availabity interval distribution. Similarly, a preventive
(corrective) down time is defined as a continuous period of time during which the
system is not operational (down), and which is initiated by a preventive (corrective)
maintenance action. If we denote with i, = foe 1 — F(7) dr the mean length of a
corrective up time, it is easily verified that the corresponding limiting probabilities
w1, me, 3 and 74 are interrelated as follows. Here, 7, denotes the long run average

fraction of time that the system remains in state k:
T imyimeima=0-FO):fi, - FO):pp-FO):pp- F(O)

Together with the normalization condition ) |, 7, = 1, this yields the required and
unique values for 7, (1 < k < 4). Let us now denote with Py (7T, < t) the probability
of at least u units of cumulative up time during an arbitrary interval of ¢ time units,
given that the system starts in state k. Then obviously, the probability P, (T, < t)
of at least u units of cumulative up time during an arbitrary interval of ¢ time units,

given that the system starts in a stationary state, is given by:

4
Po(Ty <t) =) mp- Pu(Ty < t)
k=1
In a similar way, the first two moments E . {T, —u} and E,.{(T, —u)*} of T}, —u
can be determined. In the following sections, we will elaborate on these expressions

in more detail.

4.4.1 Start in preventive up time (k = 1)

If the system starts in state k£ = 1, the remaining preventive up time is described by

a random variable Ry € [0, 0] with cumulative distribution function ®;(.):

CI)l(T):P(RlST):% ,0<7<0

As a starting point, let us determine the probabilities £i(m, n) of exactly m pre-
ventive and n corrective maintenance actions during the first « units of cumulative
up time, given that the system start in a preventive up time (k = 1). First of all,
we observe that no maintenance occurs if the remaining up time exceeds the amount
of u time units. In all other cases, the first maintenance action must be preventive
by assumption. In formula, this yields £, (0,0) = 1 — ®;(u), and £,(0,n) = 0 for all
n > 1. For all other values of m > 1 and n > 0, £1(m, n) yields an expression which

is similar to £2(m,n):
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P10 Fy(u—(m—1)-0)—
Eo(myn | m>1) = (" F@O)"HFO)" 4 F(0)- @0 EFyy(u—(m—1)-60)—
F(0)-®10Fy(u—m-0)

Given the number of preventive maintenance actions m and corrective mainte-
nance actions n, the corresponding down times do not accumulate to more than ¢t —u
time units with probability G, o H,(t — u). As a consequence, we arrive at the
following expression for P (7T, < t):

P(T, <t) Zf m,n) - Gy 0 Hy(t — )

4.4.2 Start in corrective up time (k = 2)

If the system starts in state k£ = 2, the remaining corrective up time is described by

a random variable Ry € [0, 0] with cumulative distribution function ®5(.):

T

<I>2(7'):P(R2<T):~i-/1—l*:’(v)dv 0<r<

Ky,
0

In a similar way, we can determine the probabilities fi(m, n) of exactly m pre-
ventive and n corrective maintenance actions during the first « units of cumulative
up time, given that the system start in a preventive up time (k = 2). Since the first
maintenance action must be corrective by assumption, we find £2(0,0) = 1 — ®y(u),
and £2(m,0) = 0 for all m > 1. For all other values of m > 0 and n > 1, £ (m,n)
yields an expression which is similar to £€2(m,n) and & (m,n):

d; 0 Fn_l(u —m-0)—
E(m,n | n>1)= (") FO)"-FO" - F(6) - @0 Fy(u—m-6)-
Given the number of preventive maintenance actions m and corrective mainte-
nance actions n, the corresponding down times do not accumulate to more than ¢t —u

time units with probability G,, o H,(t — w). Obviously, this yields the following
expression for Py (T, < t):

Py(T, <t) Zf m,n) - Gy, 0 Hy(t —u)

Of course, our analysis leads to similar expressions for P (T, < t) and P»(T, < t),

since their only difference orginates from the remaining up times, with corresponding
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distribution functions ®;(.) and ®,(.). Note that combination of P;(T, < t) and
Py(T, < t) would not simplify these expressions. In fact, the distinction between

preventive and corrective up times certainly facilitated their derivation.

4.4.3 Start in preventive down time (k = 3)

If the system starts in state k = 3, the remaining preventive down time is described

by a random variable R3 € [0, 00) with cumulative distribution function ®3(.):

T

©3(7):P(R3§7):i-/1—G(v)dv >0
Hp

As a starting point, we observe that the first up time starts as soon as preventive
maintenance is completed. Therefore, £2(m,n) denotes the probability of exactly m
preventive and n corrective maintenance actions during the first « units of cumulative
up time. Given the number of preventive maintenance actions m and corrective
maintenance actions n, the corresponding down times do not accumulate to more
than ¢ — u time units with probability ®3 o G,, o H,(t — u). This yields the following
expression for P3(7T), < t):

Py(T, <t) = &(m,n) B30 Gy 0 Hy(t — u)

’

4.4.4 Start in corrective down time (k = 4)

If the system starts in state k = 4, the remaining corrective down time is described

by a random variable R4 € [0, 00) with cumulative distribution function ®4(.):

T

q>4(7):p(R4gT):i-/1—H(v)dv >0
MR

In a similar way, we observe that the first up time starts as soon as corrective
maintenance is completed. Given the number of preventive maintenance actions m
and corrective maintenance actions n, with probability £2(m,n), the corresponding
down times do not accumulate to more than ¢ — « time units with probability ®, o
Gy, 0 Hy(t — u). This yields the following expression for Py (7T, < t):

Py(T, <t)= ng(m, n) - ®y0Gp o Hy(t — u)
Once again, these expressions for P3(T,, < t) and Py(T, < t) are very similar, since
their only difference originates from the remaining down times, with corresponding
distribution functions ®3(.) and ®4(.).
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4.5 The optimal maintenance interval

So far, we have considered the preventive maintenance interval # to be a given con-
stant. In this section, we will present a rather straightforward algorithm with which
an optimal preventive maintenance interval 8 can be determined from an interval
availability point of view. To this end, a plausible choice for an objective function is
presented first. Subsequently, the objective function under consideration is evaluated
for a production system with Gamma distributed repair and fixed maintenance times.
In that case, explicit formulas can be derived, which strongly reduce the complexity
of the optimization problem.

4.5.1 Objective functions

In classical maintenance theory, an optimal preventive maintenance interval 6y < oo
for a production system is usually determined by maximizing its limiting availability
A (see section 4.2). In our setting here, a similar approach would be to minimize
the expected time E..{T,} required to attain a cumulative up time of u time units,
given that the system start in an arbitrary state at time ¢ = 0. In general, these
objectives are not equivalent, i.e. E{T,}  Aw # u, in particular if u is relatively
small compared to the expected lifetime of the production system. Anyhow, none of
these objectives accounts for the fact that Var{T,} is also a value of great interest,
since it provides information about the short term behavior of the production system.
As an alternative, we have chosen to minimize the w-percentile of the availability
interval T}, where 0 < w < 1 is a user-defined constant. This is quite natural, since
it provides information about the one-sided confidence interval for the required time
to complete a cumulative workload of w time units. In line with this, our objective

becomes to minimize f(#), with parameters v and w:

fe@)=inf{t > u| Pu(Ty <t|0) >w}

4.5.2 Function evaluation

Unfortunately, the evaluation of f*(#) for a given value of € is rather complicated
from a mathematical point of view. As a starting point, numerical approximations for
the convolutions ﬁ’n, d, 0 Fn, and ®5 0 Fn have to be calculated, in order to determine
£ (m,n), L (m,n) and & (m,n) for all m,n > 0. In this respect, an upper bound M

resp. IN on the number of preventive resp. corrective maintenance actions m resp.

n needs to be identified, in order to truncate the infinite summations appearing in
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Py(T, <t). For k = 0, this can be done in a rather straightforward manner, if one
realizes that the following relation holds for all M, N > 0:

M N
o (T <'t) ZZ{ m,n) OHn(t—u)gl—ZZ§2(m,n)
m=0 n=0 m=0 n=0

In other words, M and N can be increased in a stepwise manner, until this
restriction is satisfied. Obviously, similar results can be obtained for other values
of k, which yields the desired result. Subsequently, the stationary probabilities 7
(1 < k < 4), as well as the convolutions ®3 o G,,, o H,, and &, o G,,, o H,, have to
be numerically approximated in order to evaluate P (T, < t) for a given value of ¢.
Finally, a one-dimensional search procedure (e.g. bi-section) has to be carried out in
order to identify the smallest value of ¢ for which P, (T;, < t) > w. In general, i.e. for
arbitrary distribution functions F'(.), G(.) and H(.), this yields a complex procedure
which requires a large amount of computational effort. Under some special conditions,
however, the complexity of evaluating f¢(6) can be reduced significantly, in particular
if repair times are Gamma distributed random variables, and preventive maintenance

times are fixed.

4.5.3 Gamma distributed repair and fixed maintenance times

In this section, we will restrict ourselves to the case where repair times are Gamma
distributed random variables with parameters a = p3 - 01}2 and g = u;zl - 0%, and
preventive maintenance requires a fixed amount of time pp > 0 (i.e. op = 0). Under
these assumptions, explicit formulas can be derived for G,, o H,,, ®3 0 G,, o H,, and
o, 0 Gy, © Hy, which appear in the definitions of Py(T,, < t). As a starting point, we
define W, 4(.) for notational convenience:

U, 5(r) = / Tos(v) do =7 Tap(r) — a- - Taria(r)

0

Lemma 5 If repair times are Gamma distributed random variables with parameters
a and B, i.e. pp=a-f and ok = - (2, and preventive maintenance requires a fized
amount of time pp > 0, then G0 Hy(t—u), ®30G,,0 H,(t—u) and ®40G,, 0 H,(t—u)

can be derived analytically by means of the following explicit formulas:

GnoH,(t—u)=Thaplt—u—m-pup)

Vnap(t —u—m-pp) = Vnpap(t —u—(m+1)-pp)
Hp

$30G, 0 Hy(t —u) =



4.5. THE OPTIMAL MAINTENANCE INTERVAL 97

Vyapglt —u—m-pp) = Vo iyas(t —u—m-pup)

b 0G0 Hy(t —u) =
KR

For the proof of this theorem, we refer to the appendix. Here, we only mention
that efficient computer programming codes are available for the calculation of Gamma
distributions, e.g. see Temme (1994). Hence, the only convolutions that need to be
numerically approximated are F,, ®,0F,, and ®,0F,, which appear in the definitions
of £2(m,n), £L(m,n), and £2(m,n). Since F(A) = ®1(0) = ®,(A) = 1 by definition,
and thus F(.), ®1(.) and ®5(.) all have finite support, these convolutions can be
determined to a sufficient level of detail within reasonable computational times.

In this respect, another but intuitively less attractive possibility, is to model both
preventive and corrective maintenance times as Gamma distributed random variables
with the same shape parameter 3. This would imply, however, that either average
preventive maintenance times are larger than average corrective maintenance times
(up > pg), or the coefficient of variation of preventive maintenance times is larger
than the coefficient of variation of corrective maintenance times (op/pp > or/ig).
Since none of these alternatives is likely to occur in practice, these assumptions would

leave us with a theoretical exercise of almost no practical relevance.

4.5.4 Optimization algorithm

Our optimization algorithm starts with observing that f(6) has an infinite number of
discontinuities of the form § = u/k (k > 1), because the number of preventive main-
tenance actions equals |u /@] or [u /6] if no failures occur during the required interval
of v units cumulative up time. Therefore, and to avoid the risk of sub-optimization,
we decomposed our global optimization procedure into a series of consecutive local
optimization procedures within disjunct ranges of the form [u/(k + 1),u/k). As a
starting point, however, we determine the optimal maintenance interval 6y < co from
a limiting availability point of view (Barlow and Proschan 1965), and assume that
0* < 6. In line with this, our first range under consideration becomes [u/kq, p),
where ko = [u/0y].

Our optimization algorithm is now based on the assumption that f~(0) is a piece-
wise unimodal function within each of the above-mentioned ranges. As a starting
point, we determine the optimal preventive maintenance interval 6 within the range
[u/ko, 0p) with the use of golden section search (Brent 1973). In a similar way, and
starting with k = kg, we determine the optimal maintenance interval #; within the
range [u/(k + 1),u/k), and at the same time keep track of the best-so-far mainte-
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Figure 4.4: Stationary probabilities 7 in relation to the preventive maintenance
interval 6, for a production system with Gamma distributed life times (u;, = 1,
o, = 3), Gamma distributed repair times (uy = 3, og = 1) and fixed preventive
maintenance times (up = %, op = 0).

nance interval §* within the range [u/(k + 1),6p). As soon as the optimal main-
tenance interval 8 does not change in two consecutive iterations, the algorithm is

terminated. Obviously, this stop criterion is based on the underlying assumption that
F#(03,,) = f2(0;) implies that 07 > 0.,

Under some weak conditions, it can be shown that this procedure would lead to
the optimal preventive maintenance interval, if we were concerned with the limiting
availability of the production system (Barlow and Proschan 1965). Unfortunately, we
have not been able to prove this results for the availability interval distribution. On
the other hand, we have had no indications so far that these assumptions strongly
affect the performance of our numerical optimization algorithm. Anyhow, the compu-
tational results that will be presented in the following sections should be interpreted
as a lower bound for the savings that can be obtained if the optimal maintenance

interval is determined from an interval rather than a limiting availability perspective.



4.6. NUMERICAL EXAMPLE 99

6=040—06=0.60—06=0.80

[EEN

o
O
|

o
[e0)
|

0.6 - --mmm oo h

o
~
|

cumulative probability
o°
gl

1.00 . . . 2.50

availability interval

Figure 4.5: Availability interval distribution P, (7, < t), in case v = 1, for a
production system with Gamma distributed life times (u, = 1, o = %), Gamma
distributed repair times (up = %, orp = i), fixed preventive maintenance times

(up = 1, op = 0), and different preventive maintenance intervals 6.

4.6 Numerical example

Let us now present a numerical example in order to illustrate the above-mentioned
methods in more detail. To this end, we consider a production system with Gamma
distributed life times (p, = 1 and o, = §), Gamma distributed repair times (uz = 3
and o = %) and fixed preventive maintenance times (up = % and op = 0). Moreover,
we assume that the required cumulative up time equals v = 1 time units, which is

exactly equal to the expected life time of the production system.

4.6.1 Stationary probabilities

As a starting point, we determine the stationary probabilities 7, of starting in state k,
where 1 < k < 4 (see Figure 4.4). As can be seen from this figure, 73 tends to one as
f tends to zero. In that case, the production system is maintained preventively all the
time, and the system is always down for preventive maintenance. For similar reasons,

both 7, and 73 tend to zero if § tends to infinity. In that case, all maintenance will be
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Figure 4.6: Percentiles of the availability interval 7T;,, in case u = 1, in relation to the
preventive maintenance interval 6, for a production system with Gamma distributed
life times (p, = 1, o, = 3), Gamma distributed repair times (up = 3, or = 1) and
fixed preventive maintenance times (up = 1, op = 0).

corrective, and the system will be either up or down, with corresponding probabilities
Ty @ My = g, & fip = 2 : 1. Obviously, this corresponds to a limiting availability of
Ao = iy / (g, + 1) = 3. From Figure 4.4, it can also be concluded that the optimal
maintenance interval 6y &~ 1.10 if our objective is to maximize the limiting availability
A, = w1+ 7 of the production system. Moreover, this optimal maintenance interval

hardly outperforms a corrective maintenance strategy (6* — o).

4.6.2 Availability interval distribution

To continue our analysis, let us determine the limiting behavior of the production

system for different values of 6, in terms of the cumulative distribution function
4
5
0 = %, and 0 = % respectively (see Figure 4.5). Along the horizontal axis, the
discontinuities w + |u /0] - pp and u+ [u/0] - up for T, are clearly visible. Moreover,

P, (T, <t). In this particular example, we determined these probabilities for § =

there are some strong indications that the optimal maintenance interval is closely

related to the desired confidence interval. To be specific, the best maintenance interval
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Figure 4.7: Expectation F.{T,} versus w-percentiles f*(0) of the availability in-
terval T}, in case u = 1, for a production system with Gamma distributed life times
(u, =1, o, = %), Gamma distributed repair times (uy = %, og = 1), fixed pre-
ventive maintenance times (up = %, op = 0), and different preventive maintenance

intervals 6.

equals 0 = % forw = %, 0= % forw = %, and 0 = % for w = %. Apparently, the optimal
maintenance interval decreases if the guaranteed performance during a finite period
of time (interval availability) becomes more important than the average performance
during an infinite period of time (limiting availability).

4.6.3 Optimal maintenance interval

In order to arrive at the optimal maintenance interval 6%, we determine f¥(6) for
different values of both w € {0.90,0.95,0.99} and 0 € (0, 2], where u = 1. The results
are depicted in Figure 4.6. A closer look at these results provided the following
optimal maintenance intervals: * = 0.38 for w = 0.90, §* = 0.40 for w = 0.95 and
0" = 0.40 for w = 0.99. Apparently, the optimal maintenance interval 8* hardly
depends on the value of w in this particular example. Nevertheless, we can conclude
from Figure 4.6 that the optimal maintenance interval for interval availability 6% ~

0.40 is significantly smaller than the optimal maintenance interval 6 ~ 1.10 from a
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limiting availability point of view. In the following section, we will carry out a series
of numerical experiments in order to investigate the relation between 0* and 6y on
the one hand, and between f¥(6*) and f¥(fy) on the other hand.

4.6.4 Limiting versus interval availability

Let us now further elaborate upon the difference between the average and guaranteed
performance of the production system. To this end, we compared the expectation
Eo{T1} and the w-percentiles fy(f) = inf{t > 1 | Po{Ti <t} > w} of the time T}
required to attain a cumulative up time of exactly © = 1 time unit. Of course, this
was done for different values of # and w € {0.90,0.95,0.99}. The results are depicted
in Figure 4.7. As we expected, the discontinuities of the form 6 = u/k are clearly
visible, and cause empty spaces in this figure. Moreover, we observe that a corrective
maintenance strategy (0 = oco) performs poor in both dimensions. Starting from here,
decreasing the maintenance interval leads to an improvement in both dimensions, up
to the point where the expected value Eo.{T,} is minimized (6 ~ ). Subsequently,
reducing the maintenance interval leads to degradations in the first dimension, but
at the same time to further improvements in the second dimension, up to the point
where the w-percentile f(f) is minimized (6 = #*). At this point, further reductions

in the preventive maintenance interval leads to degradations in both dimensions.

4.7 Computational results

In this section, we will present the results of a series of numerical experiments that
were carried out for a production system with Gamma distributed lifetimes, Gamma
distributed repair times, and fixed preventive maintenance times. Amongst other
factors, the main objectives of these numerical experiments were (i) to determine what
happens if the optimal maintenance interval is determined from an interval availability
rather than a limiting availability point of view, and (ii) to investigate how the optimal
maintenance interval for interval availability depends on the characteristics of the
production system.

For notational convenience, and without loss of generality, we assumed that p; =1
in each test problem. Moreover, the relevant parameters g/t tip/tig, o1 /1 and

or/pr were varied between 1 and 1, in order to arrive at 16 production systems

2 4
with - at least theoretically - different short term behavior. For each production
system, we generated a total of 9 test problems by choosing u € {1,2,3} and w €

{0.90,0.95,0.99}. For each of the 144 test problems obtained this way, the optimal
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Table 4.1: Comparison of the optimal maintenance intervals #* for interval avail-
ability and 6 for limiting availability, as well as the corresponding w-percentiles for
T,, for different values of u and w.

{1—00/0"} < 100% {1 — f(07)/fi7(00)} < 100%

minimal average maximal minimal average maximal
u=1 20.6 41.2 67.6 0.0 6.7 17.8
w=090 wu=2 18.3 29.6 45.4 0.7 3.4 9.4
u=3 19.5 26.1 35.9 0.4 2.4 6.7
u=1 20.6 39.7 64.6 1.9 10.9 20.8
w=09 wu=2 10.6 32.6 46.4 0.8 9.5 14.7
u=3 19.5 29.9 37.6 0.6 3.4 9.7
u=1 35.6 49.1 63.7 2.3 12.1 29.0
w=099 wu=2 32.8 43.4 49.9 1.3 7.4 21.0
u=3 18.4 36.7 46.5 0.7 4.7 13.6

maintenance interval 6% for interval availability, the optimal maintenance interval 6,
for limiting availability, and the corresponding availability interval percentiles f(6)
and f¥(fy) were determined with the use of our optimizatin algorithm. An overview
of all test problems is depicted in Table 4.1. In addition, the results for all test
problems with v = 1 are depicted in Table 4.2.

As a starting point, it is easily verified from Table 4.1 that significant improve-
ments can be obtained in the short term behavior of a production system, if the
optimal maintenance interval is determined from an interval availability rather than
a limiting availability point of view. Depending on the required amount of cumulative
up time u > 0, the required percentile w < 1, and the characteristics of the produc-
tion system, the corresponding improvements are substantial, with a maximum of
about 30% in the availability interval. To achieve this, a 10% to 70% reduction in
the preventive maintenance interval was typical.

Summarizing, the general conclusion that can be drawn from Table 4.1, is that
the required up time u > 0 and percentile w < 1 on the one hand, and the optimal
maintenance intervals 0*and 6y with availability interval percentiles f¢(6*) and f(6y)

on the other hand, are interrelated as follows:

e an increase in the desired up time u usually goes together with an increase in the
optimal maintenance interval 8* for interval availability, as well as a decrease

in the relative performance of 6% versus 6, in terms of f¥(6y)/f2(6%);
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e an increase in the desired percentile w usually goes together with a decrease
in the optimal maintenance interval 8 for interval availability, as well as an

increase in the relative performance of % versus 6y in terms of f2(6y)/f<(6%).

In a similar way, it can be derived from Table 4.2 to which extent the character-
istics of the production system affect the optimal maintenance intervals 6%, as well
as the corresponding availability interval percentiles f¥(6*). As a starting point, and
as expected, we observe that 6y depends on o, /u; and pup/pg only. In addition, the

following observations were made from Table 4.2:

e an increase in the ratio of repair versus maintenance times usually goes together
with a decrease in the optimal maintenance interval 6* for interval availability,

as well as a decrease in the corresponding availability interval percentile f&(0");

e an increase in the variation of life and/or repair times usually goes together
with a decrease in the optimal maintenance interval §* for interval availability,

as well as an increase in the corresponding availability interval percentile f&(6).

Although intuitively attractive, these rules of thumbs do not cover all possible
situations that may occur, e.g. see pg/p, = pp/pp =3 and op/p, = or/pp =% in
Table 4.2. Nevertheless, we conclude that the guaranteed availability interval of a pro-
duction system can be improved significantly, if the optimal preventive maintenance
interval is determined from an interval availability perspective. From a practical
point of view, this means that preventive maintenance is a powerful instrument to

increase the controllability or predictability of a production system.

4.8 Concluding remarks

In this paper, we have presented a series of mathematical models which can be used
to determine the availability interval distribution for a production system which is
maintained preventively at regular intervals, according to an age replacement strategy.
Moreover, we have presented an optimization algorithm, with which the optimal
maintenance interval can be determined from an availability interval point of view.
A series of numerical experiments indicated that significant improvements in the
availability interval can be obtained in comparison with a classical limiting availability
perspective, and that these effects become stronger as the variabilities in life and/or
repair times increase. Simply stated, our computational results have illustrated that
preventive maintenance does not only increase the availability, but also reduces the
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Table 4.2: Availability interval percentiles for T, at the optimal maintenance inter-

vals 0 for interval availability and fy for limiting availability, for 16 test problems

with v = 1, u;, = 1, and different value of w.

w = 0.90 w = 0.95 w = 0.99
tx toooeooul gy [ gt fo(07) f2(00)] 0° F2(07) f(00)| 0 £267) F2(00)
i+ 1 Llui0fo37 1.93 205 |040 213 227 |040 252 @ 2.71
5 3 3 1/1.10[064 1.89 1.96 [0.64 203 211 (043 230  2.39
i 4 2 11078050 150 171 [0.50 150  1.89 [0.50 1.74  2.26
: 3+ % 11078{050 1.50 1.70 [0.50 1.50  1.81 |0.34 1.75  2.01
5 % 5 % /056[026 150 182 [0.20 1.71  2.03 [0.22 223 248
5 %+ 3 $1]056[026 150 1.76 [0.37 1.84 191 [0.28 2.07 225
3 % % ¥ /063/050 125 125 |0.50 1.25 1.54 [040 1.38  1.94
$ 4+ 4 11063050 125 125 [0.50 1.25 1.56 [0.40 1.38  1.77
1 % % % |1.10/036 146 151 |0.39 1.56 1.62 [040 1.76  1.84
: &+ & 1]110[062 144 148 |0.62 1.51  1.55 [043 1.65  1.69
3 3 % $]078[050 125 1.35 [050 1.25 144 (050 1.36  1.62
: &+ 4 41078050 125 135 |0.50 1.25  1.40 [0.50 1.37 151
3 % 3 $1]056[026 125 140 [0.20 1.32 150 (021 1.61  1.72
: + % $1]056[026 125 137 |0.37 142 144 [028 153  1.62
: + %+ 1063050 113 113 [050 1.13  1.26 [0.39 119  1.46
: % % 4063050 113 113 [050 1.13  1.28 [0.39 119  1.39
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variability of a production system, and that the latter is often a more important
performance measure. Although these conclusions were drawn within a setting of
Gamma distributed repair and fixed maintenance times, we strongly believe that
they are also applicable to more complex systems.

To conclude this chapter, let us now briefly discuss the possibilities for approx-
imating the availability interval distribution, in case repair times are not Gamma
distributed random variables and/or preventive maintenance times are not fixed. In
the most general case, it not possible to derive explicit formulas for the convolutions
G, o H,, appearing in Py(T, < t). Under such circumstances, another interesting
and potentially promising approach is to fit a Gamma (or other) distribution to the
first two moments E,.{T, — u} and E{(T, — u)*} of T, — u. The underlying ob-
servation behind this approach is that these moments can be determined as long as
the first three moments of G(.) and H(.) are available. In general, we may have to
account for the fact that the availability interval distribution P, (T, < t) might have
some discontinuities as well. If these jumps are known in advance, i.e. in terms of
aset Q ={t>u| Pyo(T, =t) > 0} of availability intervals with non-zero prob-
abilities, it seems worthwile to approximate Py (T, < t | t ¢ Q} with the use of
Exo{T, —u |t ¢ Q} and B {(T, —u)? |t ¢ Q}. These suggestions, however, are left
for future research.

4.9 Appendix

Proof of Lemma 5

As a starting point, we observe that the following expressions can be derived for the
cumulative distribution functions ®3(.) and ®4(.) of the remaining preventive down

time R3 € [0, pup], and the remaining corrective down time R4 € [0, co):

T

Qy(r)=—, 0< 7 < pp
Hp
1 T
@4(7):—-/1—%3(@)@ >0
123;;

For notational convenience, and without loss of generality, we substitute z =
t —u—m- up in the sequel. Our analysis now proceeds as follows. First of all, we
observe that the expressions for G,, o H,(t — u) and ®3 0 G,, o H,(t — u) can be
derived rather straightforwardly by some elementary algebra. On the other hand,
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o4 0 Gy, 0 Hy(t — u) yields a somewhat more complex expression, which must be
further simplified:

Gmo H,(t —u) = H,(2) =T'.0p(2)

Q30G,, 0 Hy(t —u) = P30@,.44(2)

1 Hp
= — - [ Thaglz —7)dr
Hp / ol )
0
Vna,8(2) = Ynap(z — pip)

Hp

P 0G0 Hy(t—u) = ®y0l,.48(2)

1

= = [ =Tap) Ttz =) i

Tr(2) — [ Caa(r) sl = 7) dr

KR

Apparently, we need to show that ¥(,41).0,8(2) = [; Tas(7) - Tnap(z — 7) dr in
order to arrive at the expression for ®4 0 G,, o H,(t — u) in Lemma 5. Our analysis
now proceeds as follows. First of all, we observe that [ T s(7) - Iy.a,g(z — 7) d7 can

be rewritten as follows:

z

/ Pos(7) - Toag(z — 7) dr = / / % (Tas(0) - Tz — v)} do dr

0

= //yaﬁ(v) Thap(z—v) dvdr— //Faﬁ(v) -yn,aﬁ(z —v) dvdr
0 0 0 0

By changing the integration variables, both integrals can be reduced to one-
dimensional integrals, each of which can be evaluated explicitly by using the following
well-known properties [ 7 -7, 4(7) d7 = - - Taq1,5(2) and [ 74, 5(7) - Tapp(z —
T) dT =Ty 4ay,8(2) for Gamma distributions:
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z T z

/ / (V) - Tap(z — ) du dr = / (2= 0) 7 5(0) - Toap(z — v) dv

0
z z

=z /7@73(1)) Thap(z —v) dv— /v Ya3(V) - Tnap(z —v) dv
0 0

=2 Ti1)a6(2) —a- B Tuyiyate(z)

z

/Z/Fa,ﬁ(v) Vaplz —v) dv dT = /(z —0) - Tap(V) - Ypap(z — v) dv

0

z

= /U : Vn.a,ﬂ(v) ' Fa,ﬁ(z - U) dv=mn-a-f- F(n+1)-oé+1,5(2’)
0

Since z-I't1).a,8(2) = (n+1)-a- B-Tmi1)a+1,8(2) = Yint1).a,8(2), this completes
the proof.
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Chapter 5

Two-stage generalized age maintenance of

an intermittently used production system

In general, the initiation of preventive maintenance should be based on the
technical state as well as the operating state of a production system. Since the
operating state of a production system is often subject to fluctuations in time,
the planning of preventive maintenance at preset moments (e.g. age/block
replacement) cannot be optimal. To avoid this, we consider a so-called two-
stage maintenance policy, which - in a first stage - uses the technical state of
the production system to determine a finite interval [t,¢ + At] during which
preventive maintenance must be carried out, and - in a second stage - uses the
operating state of the production system to determine the optimal starting time
for preventive maintenance within this interval. A generalized age maintenance
policy optimizing both ¢ and At is formulated in the first stage. To this end,
the actual starting time of preventive maintenance is modelled in terms of a
uniform distribution over the maintenance interval. Moreover, the expected
costs of preventive maintenance are modelled as a decreasing function of the
interval size. An efficient algorithm is developed to demonstrate the optimal

maintenance strategies via numerical results that offer useful insights.

5.1 Introduction

Every few years, new surveys appear on maintenance optimization, showing the use
and benefits of mathematical models in the maintenance area, e.g. see McCall (1965),
Pierskalla and Voelker (1976), Sherif and Smith (1981), Valdez-Flores and Feldman
(1989) and Cho and Parlar (1991). Most of these models, however, fail to incor-

porate special characteristics of the production facilities. Typically, this is the case
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in commonly used mathematical models for maintenance optimization, such as the
age and block replacement model (Barlow and Proschan 1965), the modified block
replacement model (Berg and Epstein 1976), the minimal repair model (Barlow and
Hunter 1960), the standard inspection model (Barlow, Hunter, and Proschan 1963),
and the delay-time model (Christer and Waller 1984). Apart from the failure statis-
tics, all information on the effects of down-time on the production system have to be
condensed into two constants ¢, > 0 and ¢; > 0, representing the expected costs of

preventive and corrective maintenance respectively.

In our view, the costs associated with preventive and corrective maintenance
should be divided into direct maintenance costs (e.g. salaries of maintenance per-
sonnel, spare parts, tools) and indirect maintenance costs (e.g. production loss, delay
penalties, holding costs). Simply stated, direct maintenance costs depend on the
technical state of the production system (e.g. age of the machine, failure charac-
teristics), and indirect maintenance costs on the operating state of the production
system (e.g. buffer contents, workload, due dates). In general, the initiation of cor-
rective maintenance is only based on the technical state of the production system.
After all, most production systems are repaired at failure, disregarding the operating

state of the production system.

On the other hand, the initiation of preventive maintenance should be based on
the technical state as well as the operating state of the production system, in order to
reduce the impact of indirect preventive maintenance costs. Since the operating state
of a production system is often subject to fluctuations in time, there is a perspective of
significant gains if some flexibility is built in concerning the starting time of preventive
maintenance (e.g. in a setting of production orders with release and due dates).
It seems reasonable therefore to consider a so-called two-stage maintenance policy,
which - in a first stage - determines a finite interval [t, ¢ + At| during which preventive
maintenance must be carried out, and - in a second stage - determines the optimal
starting time ¢ for preventive maintenance within this interval. Although this is a
widespread common sense in practice, it certainly is an underexposed point of view

in existing literature.

Simply stated, the design of our maintenance policy is based upon a hierarchical
decomposition principle, where we distinguish between two planning stages (see Fig-
ure 5.1). In the first stage (the long term), information about the operating state
of the production system is assumed to be available in terms of a stationary sto-
chastic process only. Therefore, the initiation of preventive maintenance is based on
the technical state of the production system. In the second stage (the short term),
information about the operating state of the production system is assumed to be
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first stage second stage
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0 t t t+At

Figure 5.1: Decomposition principle of the two-stage maintenance policy, which
- in a first stage - determines a finite interval [¢t,¢ + At] during which preventive
maintenance must be carried out, and - in a second stage - determines the optimal

starting time ¢ for preventive maintenance within that interval.

available beforehand over a finite, rolling horizon. Therefore, the initiation of pre-
ventive maintenance is based on the operating state of the production system. Of
course, the crucial part of our approach will be to define adequate models for both
stages, and to connect them properly. At least, first-stage models should incorporate

second-stage implications, and vice versa.

5.1.1 Related literature

Although our two-stage maintenance concept can be observed in a variety of practical
situations (a typical application was found at Vliegbasis Twenthe, one of the main
operating bases of the Dutch Royal Airforce, where F16’s undergo overhaul main-
tenance between 190 and 210 flight hours), we are not aware of any mathematical
models that support this type of preventive maintenance planning, at least in existing
literature. Nevertheless, several authors have recognized that the initiation of preven-
tive maintenance should also be based on the operating state of a production system,
and not on its technical state only. Here, we will only mention some important and
illustrative references.

As a starting point, there is a considerable amount of literature which deals with
the modelling and optimization of so-called opportunistic maintenance policies. The
main underlying observation behind these models is that preventive maintenance
activities can only be carried out at times when the system is not required, or not
available for production. Sometimes, failure repairs of one or more components create
opportunities for preventive maintenance on other components, e.g. see Jorgenson
et al. (1967), Berg (1978), Béickert and Rippin (1985), Van der Duyn Schouten and
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Vanneste (1990), and Zheng (1995). It is also possible that maintenance opportu-
nities are generated independently of component failures, e.g. by idle times in the
production schedule, or by withdrawn production orders. Typical examples of such
models can be found in e.g. Mine et al. (1981), Berg (1984), Dekker and Dijkstra
(1992), Dekker and Smeitink (1994), and Dagpunar (1996). The reader is referred
to Dekker and Smeitink (1991) for an extensive literature review on opportunistic
(block) replacement models.

In the past few decades, much attention has been paid to the performance be-
havior of production/inventory systems with random service disruptions, e.g. see
De Koster (1988), Lee and Rosenblatt (1987), Groenevelt et al. (1992), Berg et al.
(1994), and Moinzadeh and Aggarwal (1997). A basic contribution is the paper of
Wijngaard (1979), who considers a flow line consisting of two machines with exponen-
tially distributed up and down times, which are connected by an intermediate buffer
with finite storage capacity. Although the impact of machine failures on system per-
formance is widely recognized, there are only few papers which explicitly account for
preventive maintenance policies within the context of production/inventory systems,
e.g. see Lee and Rosenblatt (1989), Van der Duyn Schouten and Vanneste (1995),
Meller and Kim (1996), and Srinivasan and Lee (1996). Moreover, these models are
often very complex, and only apply to specific settings.

In our opinion, there is a lack of elementary maintenance concepts and accom-
panying models, which more explicitly take into account that (i) the initiation of
preventive maintenance should also be based on the operating state of a production
system, and (ii) this operating state is often known in advance over a finite rolling
horizon in an operational planning phase. The newly developed two-stage mainte-
nance concept is our first attempt into this direction. Throughout this chapter, we
will mainly focus on its applications into the classical age replacement policy (Barlow
and Proschan 1965). Nevertheless, our approach could easily be generalized to other
maintenance concepts as well (e.g. block replacement, minimal repair, and inspection

models). We will come back to that later on in this chapter.

5.1.2 QOutline

The outline of this chapter is as follows. In section 5.2, we present the general
approach of our two-stage maintenance policy, and elaborate upon the interaction
between both stages. In section 5.3, a generalized age maintenance policy optimizing
both t and At is presented, in which the second stage is incorporated by means of
an approximate model. In section 5.4, the second stage is studied in more detail for



5.2. GENERAL APPROACH 113

an on/off production system, and a queue-like production system as well. Computa-
tional results in section 5.5 are given to validate our first stage model assumptions.
Moreover, they indicate that significant savings can be obtained in comparison with
a classical age maintenance policy. Finally, some concluding remarks are summarized

in section 5.6.

5.2 General approach

Consider an unreliable production system, which is subject to random failures or
breakdowns. In case of a failure, the system is repaired correctively. In addition, pre-
ventive maintenance actions are carried out to prevent failures. After each preventive
and corrective maintenance action, the production system is assumed to be restored
into an as-good-as-new condition. More specifically, the times between failures are
mutually independent stochastic variables with cumulative distribution function F'(¢)
and corresponding probability density f(¢), where ¢ > 0 denotes the elapsed (calendar
or operating) time since the last maintenance action, either preventive or corrective.

As mentioned before, the design of our two-stage maintenance policy is based upon
a hierarchical decomposition principle, where we distinguish between two planning
levels. The highest level (the first stage) is related to the long term between preventive
maintenance actions. The lowest level (the second stage) relates to a much shorter
term, which is typical for the operational control of the production system. The main
difference between these two levels is the kind of information which is available.

In the first stage, information about the operating state of the production sys-
tem is assumed to be available in terms of a stationary stochastic process X(+) only.
Therefore, the initiation of preventive maintenance is based upon the technical state
(e.g. cumulative operating time) of the production system: preventive maintenance
must be carried out somewhere between times ¢ and ¢t + At since the last mainte-
nance action, either preventive or corrective. In the second stage, information about
the operating state of the production system, i.e. the actual realization of X(-),
is assumed to be available beforehand over a finite, rolling horizon. Therefore, the
initiation of preventive maintenance is based upon the operating state X (-) of the
production system, which is now deterministically given over the entire maintenance
interval [t, + At]: preventive maintenance is carried out at the best opportunity £
within this interval.

In general, our approach might invoke an upper bound At,,,, on At, since this
kind of information is only available on a short term basis. For notational convenience,

and without loss of generality, we assume that At,,,, < oo in the sequel. Now the
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basic motivation for our approach is that both stages should interact in a simple
but effective way, allowing separate control mechanisms for each stage. In line with
this, our modelling framework proceeds as follows. In the first stage, a generalized
age maintenance policy optimizing both ¢ and At is formulated, in which the second

stage is incorporated by means of an approximate model with two main elements:

e the actual starting time for preventive maintenance (as determined in the second
stage) is modelled in terms of a uniform distribution over the maintenance
interval [t,t + At];

e the actual cost of preventive maintenance (as observed in the second stage) is
modelled as an expected cost function ¢,(At), whereas ¢; denotes the expected

cost of corrective maintenance.

Although our analysis could easily be generalized to other than uniform distrib-
utions, we will restrict ourselves to the uniform distribution in this chapter. From
a practical point of view, these assumptions relate to the uncertainty in operational
information in the first stage, and are based on the (intuitive) reasoning that (i) each
starting time within the interval [¢, ¢ 4+ At] has the same probability of being chosen,
and (ii) there is no correlation between the actual starting time and the actual cost
of preventive maintenance. In general, this reasoning can only hold approximately,
since the second stage is controlled by complex stochastic processes, with their own
stochastic laws (see section 5.4.2). There are situations, however, where these first

stage assumptions are entirely justified from a second stage point of view (see section
5.4.1).

5.3 The first stage

In the first stage, information about the operating state of the production system
is assumed to be available in terms of a stationary stochastic process X(-) only.
Therefore, the initiation of preventive maintenance is driven by the technical state
of the production system: preventive maintenance must be carried out somewhere
between times ¢t and t + At since the last maintenance action, either preventive or

corrective.

5.3.1 Model and assumptions

First of all, let us denote with h(t, At) the expected costs of the two-stage main-

tenance policy per unit of time, and assume that analytical expressions for ¢; and
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cp(At) are available. Furthermore, define a cycle as the time between two consecutive
maintenance actions, either preventive or corrective. Then it follows from renewal
theory (Cox 1962) that the expected costs per unit of time are equal to the expected
costs per cycle divided by the expected length of a cycle. Elaborating on the last two
quantities yields the following expression for h(t, At). Here, we denote F'(t) = 1—F(t)

for notational convenience:

t+AL
[ Aep- Flu) + ¢, (At) - F(u)} du
h(t, At) = - "
1l f ) dv du
L0

Note that g(t) = limas o h(t, At) coincides with the classical age maintenance
policy (Barlow and Proschan 1965), which prescribes preventive maintenance to be
carried out ¢ time units after the last maintenance action, either preventive or cor-

rective. Here, we denote ¢, = ¢,(0) for notational convenience:
cr F(t) + ¢, F(t)

t —_—

[ F(u) du

0

g(t) =

Of course, our objective now is to minimize h(t, At) with respect to ¢ and At.
Given that F'(t) and ¢,(At) are both continuously differentiable in ¢ and At, it
follows that h(t, At) is also continuously differentiable in ¢t and At. To simplify our
analysis, we make the following (natural) assumptions with respect to the mainte-
nance cost functions c; and ¢, (At), as well as the failure rate r(t) = f(t)/F(t). Here,

= fo ) dt denotes the expected life time of the production system:
(i) ¢(0) <ep,
(ii) ¢p(At) is decreasing in At,

(iii) r(t) is strictly increasing in ¢,

. . Cf . l
() Jim r(t) > % 1.

In general, finding the optimal two-stage maintenance policy {t*, At*} is a complex
problem, since h(t, At) cannot be evaluated explicitly, and may have multiple local
minima as well. Therefore, our first objective in this section is to derive several
properties of h(t, At) with which optimal policies {t*, At*} can be classified. With
these properties, an efficient algorithm is developed to determine the optimal two-

stage maintenance policy.
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5.3.2 Generalized age maintenance

As a starting point of our analysis, we will show that the two-stage maintenance policy
is indeed a generalized age maintenance policy. In other words, we need to prove that
At* = 0 if the costs of preventive maintenance c¢,(At) are fixed, i.e. independent of
At. To this end, let us denote with ¢* and At* values of ¢t and At for which h(¢, At)

is minimized, and define r (¢, At) as follows:

t+ AL

[ f(u) du
r(t, At) = =

t+At

tf F(u) du

From a practical point of view, r(t, At) could be interpreted as a sort of averaged
failure rate during the interval [¢t,t + At]. Now putting the derivatives of h(t, At)
with respect to t and At equal to zero, yields the following equibrilium equations

for h(t*, At*):

h(t', At) = (c; — c)(AF)) - #(t*, AtY)

_ ALY
cp - F(t* + At*) + ¢ (At*) - F(t* + At*) + ¢ (At*) - tf F(u) du
h(t*, AtY) = t* AL
[ F(u) du

0

If At* < At,.., these equations represent sufficient conditions for a local ex-
tremum {¢*, At*}, and necessary conditions for a global minimum {t*, At*}. More-
over, if At* = 0, they reduce to some well-known relations for the classical age

maintenance policy. Here, we denote ¢, = ¢,(0) < ¢ for notational convenience:

g(t") = (ef = ¢p) - (1)

Our analysis now proceeds as follows. First of all, we will show that r(¢, At) is
strictly increasing in ¢t and At, provided that r(t) is strictly increasing in ¢. For the

proof, we need the following lemma:
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Lemma 6 Consider two strictly positive and continuous functions m(t) and n(t),

where t > 0. If m(t)/n(t) is strictly increasing in t, then the following relations hold:

(a) m(a)/n(a) < f m(u) du / f ) du < m(b)/n(b) for all a,b > 0 with a < b,

a-+b a-+b
(b) f ) du / f ) du is strictly increasing in a > 0 for allb >0,
a+b a+b

(c) f m(u) du / f n(u) du is strictly increasing in b > 0 for all a > 0.

Proof. See Appendix A. O

Theorem 1 r(t, At) is strictly increasing in t > 0 for all At > 0, and strictly
increasing in At >0 for all t > 0; moreover, r(t) < r(t,At) < r(t+ At) for allt >0
and At > 0.

Proof. Since r(t) = f(t)/F(t) is strictly increasing in ¢ by assumption (iii), sub-
stitution of m(u) = f(u), n(u) = F(u), a = t and b = At in Lemma 6b yields:
r(t, At) is strictly increasing in ¢ > 0 for all At > 0. In a similar way, substitution
of m(u) = f(u), n(u) = F(u), a =t and b = At in Lemma 6c yields: r(¢, At) is
strictly increasing in At > 0 for all £ > 0. Finally, it follows from Lemma 6a that
r(t) < r(t,At) < r(t 4+ At) for all t > 0 and At > 0, which completes the proof. O

With these properties of (¢, At) in mind, it can now easily be derived that At* = 0
if the costs of preventive maintenance c,(At) are independent of At. This is stated

more explicitly in the following theorem.

Theorem 2 If ¢,(At) = ¢, > 0 for all At > 0, then h(t, At) has a unique mini-
mum {t*, At*} = {to,0}, where to < oo reflects the optimal age maintenance policy.
Moreover, min{h(t, At) | t > 0} is strictly increasing in At > 0.

Proof. As a result of assumptions (iii) and (iv), g(¢) = lima; .o h(¢, At) has a unique
minimum ¢, < oo with ¢(tp) = (¢; — ¢p) - 7(to), e.g. see Barlow and Proschan (1965)
for further details. As a consequence, g(t) > g(to) for all t # to. Let us now consider
an optimal two-stage maintenance policy {t*, At*}. With ¢,(At) = ¢, > 0, and thus
¢, (At) = 0 for all At > 0, the equibrilium equations for h(t*, At*) reduce to:

Bt AF) = (e — ¢) - F{t*, AF) = g(t* + AF)
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Since h(t*, At*) < g(to) by definition, and g(t) > g¢(to) for all ¢ # o, we have
t* + At* = tg. Now suppose that At* > 0. Since r(t*) < r(t*, At*) < r(t* + At*) by
Theorem 1, this yields h(t*, At*) = (¢; — ¢p) - r(t*, At*) < (¢f — ¢p) - 7(t* + At*) =
(cf —¢p) - 1(to) = g(to) = g(t* + At*), which is in contradiction with h(t*, At*) =
g(t* + At*). Apparently, At* > 0 cannot be optimal, and thus At* = 0 and t* = ¢,
reflect the global minimum. Following a similar argument, it can be shown that
min {h(t, At) | t > 0} is strictly increasing in At > 0. O

5.3.3 Problem decomposition

To continue our analysis, we will show that for fixed values of At, the minimization
of h(t, At) with respect to t is a relatively simple problem. As a starting point, we
denote with {(At) = argmin{h(t, At) | t > 0} the value of ¢ for which h(t, At) is
minimized, and observe that the following implicit relation can be derived for £(At):

(¢ — cp(A)) - 7(E(AL), At) = h(§(At), At)

Obviously, this equation reflects a necessary condition for £(At), since each global
minimum must coincide with a local extremum. In the following theorem, however,
we will show that it is also a sufficient condition for £(At). In other words, we will
show that there exists exactly one local minimum &(At), and no local maxima, for
each At > 0. For the proof, we need the following lemma:

Lemma 7 For each At > 0, t* is a local minimum of h(t, At) with respect to t, if
and only if there exists an € > 0 such that:

<0 for tr—e<t<t*
(cr —cp(AL)) -r(t,At) — h(t,At) =0 for t=t*
>0 for tr<t<t‘+e

Proof. First of all, recall that ¢* is a local minimum if and only if there exists
anz—:>05uchthat% < O0fortr—e <t <t¥, and% >0fort* <t<tr+e.
Now suppose that % = 0 on a finite interval [ty,ts] with t; < t* < ¢ty and t; < to.
Then ¢; and t, are also local extrema, and thus h(t;, At) = (¢; — ¢,(Al)) - r(t1, At)
and h(tz, At) = (¢y — ¢p(At)) - r(t2, At). Since r(t, At) is strictly increasing in ¢ by
Theorem 1, and ¢; < t5 by construction, this yields h(t1, At) < h(ts, At), which is in
conflict with the assumption that % = 0 on [t1,t3]. Apparently, t; < t5 leads to a
contradiction. Hence, t; = t* = t5, implying that % <Ofortr—e<t<tr % =0
for t = t*, and% >0fort* <t<t:+e O
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Theorem 3 There exists a unique local minimum £(At) < oo; moreover,

<0 for t<&(At)
(Cf - Cp(At)) ) T(t> At) - h(ta At) =0 for t= f(At)
>0 for t>¢&(At)

Proof. As a starting point, we observe that h(£(At), At) < ¢ - p*, since we can
never do worse than a purely corrective maintenance strategy. Since lim; o (c; —
cp(AL)) - 7(t, At) > (cp — ¢p(0)) - limoo 7(t) > ¢y - p~ ' by assumptions (ii)-(iv), it
follows that {(At) < oo for all At > 0. Now suppose that ¢; and ¢, are both local
minima of h(t, At) given At, with ¢; < t5. Since h(t, At) is continuously differentiable
in t, it follows from Lemma 7 that there must also exist a local maximum t* with
t; < t* < ty. In a similar way, this implies the existence of an ¢ > 0 such that
(cr — cp(AL)) - r(t, At) > h(t,At) for t* —e < t < t*, and (c; — ¢,(At)) - r(t, At) <
h(t, At) for t* < t < t*+¢e. With € — 0, this requires (¢; — ¢, (At)) - r(t, At), and thus
r(t, At), to be decreasing in ¢ = t*, which is in conflict with Theorem 1. Apparently,
the assumption of two (or more) local minima leads to a contradiction. Hence, there is
exactly one local minimum &(At) < oo, and there are no local maxima. Consequently,
(cr —cp(AL))-7(t, At) < h(t,At) for t < {(At), and (cp — cp(AL)) - r(t, At) > h(t, At)
for t > £(At). This implies the uniqueness of {(At), and completes the proof. O .

As aresult of Theorem 3, we know now that h(t, At) is a unimodal function in ¢ for
all At > 0 (a local minimum of a unimodal function is also a global minimum). Hence,
£(At) can be determined efficiently with the use of standard search techniques. Now,
a natural idea is that a search for the global minimum {t*, At*} of h(t, At) should
exploit this fact. Therefore, we have chosen to decompose our global optimization
problem into two subproblems, one that determines £(At) for a given value of At, and
one that minimizes h(§(At), At) with respect to At. This is stated more explicitly in

the following section.

5.3.4 A branch and bound algorithm

In general, finding the optimal two-stage maintenance policy {t*, At*} is a complex
problem, since h(t, At) cannot be evaluated explicitly, and may have multiple local
minima as well. As a consequence, classical optimization procedures may get stuck in
a local minimum, which is not desirable. To avoid this, we have developed an efficient

numerical optimization algorithm, which combines the concept of bisection search
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with branch and bound enumeration. This algorithm is based on the decomposition
principle of the previous section, and proceeds as follows.

As a starting point, the optimal age maintenance policy ty < oo is determined,
resulting in a best-so-far two-stage maintenance policy {t*, At*} = {to,0}, with cor-
responding costs g(tp). Subsequently, a node (0, At,,q) is created, where At,e, < 00
denotes the maximal interval size. In general, each node (a,b) corresponds with an
interval a < At < b, and contains a lower bound Ay, (a,b) for the optimal policy
within that interval. If hipw(a,b) - (1 4+€) > h(t*, At*), where {t*, At*} denotes the
best-so-far policy and € > 0 is a user-defined constant, the corresponding node (a, b)
is closed. Otherwise, a closer look at that interval is necessary, and bisection is used.
More specifically, new nodes (a,c) and (c¢,b) with ¢ = 22 are created, and &(c)
is determined to check whether the best-so-far policy {t*, At*} is outperformed by
{&(c), ¢}. Subsequently, hjo,(a, ¢) and hy,(c, b) are determined, and the most promis-
ing node - in terms of the corresponding lower bound - is selected. This procedure
is repeated recursively until all nodes are closed. At this point, {t*, At*} denotes a
so-called e-optimal two-stage maintenance policy.

The question remains how to determine a lower bound hy.,(a,b) for the optimal
two-stage maintenance policy within the range a < At < b. First of all, we observe
that ¢,(At) is decreasing in At, and thus ¢,(At) > ¢,(b) for all At < b. Moreover, if
we substitute ¢,(At) = ¢,(b) in h(t, At), it follows from Theorem 2 that min{h(t, At) |
t > 0} > min{h(t,a) | t > 0} for all At > a. Summarizing, this leaves us with the
following lower bound Ay, (a, b) for min{h(t, At) |t > 0,a < At < b}:

tt}a{cf - F(u) + ¢, (b) F(u)} du

hlow(aa b) = 1}12151

tta uw___
[ [F(v) dv du
t 0

Similar to the proof of Theorem 3, it can be shown that the right hand side of this
equation is a unimodal function in ¢. In other words, hj(a,b) can be determined
efficiently with the use of standard search techniques, in particular if a good initial
value for ¢ is provided. In our optimization algorithm, hjy(a,c) and hye,(c,b) are
determined with an initial value £(c¢) for ¢. In a similar way, £(c) is determined
through evaluation of hy,,(c, ¢), with an initial value for ¢ that is inherited from the
parental node. Further details are skipped, since they are not so relevant for what
follows.

In general, h(t, At) cannot be evaluated explicitly, as a result of which all integrals

in t and At must be numerically approximated, for example by means of a trapezoidal
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Table 5.1: Effect of § > 0 and € > 0 on the accuracy of the optimal policy {¢*, At*},
for a production system with Gamma distributed life time: p = o2 = 10, ¢; = 100,
and ¢, (At) =20 +5 - e O-1AL

) 5 t* At* h(t*, At*) # seconds  # nodes
0.1 0.01 4.9 1.9 5.21841061 0.002 11
0.1 0.001 5.0 1.7 5.21686204 0.004 33
0.01 0.001 5.01 1.65 5.21629661 0.012 47
0.01 0.0001 5.02 1.64 5.21628726 0.058 125

0.001 0.0001 5.022 1.637 5.21628262 0.157 177
0.001 0.00001 5.021 1.638 5.21628260 0.238 411
0.0001 0.00001 5.0214  1.6377  5.21628255 0.583 959
0.0001  0.000001  5.0214  1.6376  5.21628255 0.797 1275

rule with step sizes 6, where 6 > 0 is a user-defined constant. As a consequence,
only maintenance policies of the form {m - §,n - 6}, with m,n € N, are considered.
Obviously, smaller values of 6 and e lead to more accurate results, but also require
more computational effort (see Table 5.1). In the remainder of this chapter, we will
restrict ourselves to Gamma distributed life times F'(t) = I',, 5(t), with mean p = a3,
and variance 0? = o - 32. By doing this, g(t) and h(t, At) can be evaluated explicitly

as follows. Once again, we denote ¢, = ¢,(0) for notational convenience:

cp + (cf — ) Tap(t)
9(t) = t-(1-— Faﬁ(];)) —a-f 'ﬁFaH,/B(t)

cp(AL) - At + (¢; — (A1) - [u-Tap(u) — - B - Tayrpu))>
t+At

[3u? (1= Tap(u) + o B u Taprpu) — 3(a+a?) B Tarap(u)],

h(t, At) =

For the proof, we refer to Appendix B. Here, we only mention that efficient com-
puter programming codes are available for the calculation of Gamma distributions,
e.g. see Temme (1994). Of course, these procedures were further exploited in deriving

the optimal two-stage maintenance policy {t*, At*}.

5.4 The second stage

In the second stage, information about the operating state of the production system,
i.e. the actual realization of X (-), is assumed to be available beforehand over a finite,

rolling horizon. Therefore, the initiation of preventive maintenance is based upon the
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operating state X (+) of the production system: preventive maintenance is carried out
at the best opportunity ¢ between times ¢ and ¢ + At. In general, we have to account
for the ensemble of all possible realizations of the process X (-) in the second stage,
in order to arrive at the averages relevant for ¢; and ¢,(At) in our first stage model.
In this section, we will restrict ourselves to the case where X(.) behaves according
to (i) an on/off process with exponentially distributed on- and off-periods, and (ii) a
continuous-time Markov process on a finite state space. To simplify our analysis, we
assume that X(+) is ergodic (i.e. all states are recurrent), and that X (-) is restored
to a stationary state after each preventive and corrective maintenance action. In the
remainder of this section, these assumptions will be studied in more detail for both

examples.

5.4.1 An on/off production system

As a starting point, we consider a production system with alternating on- and off-
periods. During an on-period, the system produces continuously, and is subject to
failure (the busy state). During an off-period, the production system is not pro-
ductive, and cannot fail (the idle state). Our objective is to minimize the limiting
conditional pointwise unavailability of the production system, i.e. the long term
probability that the system is not available when needed for production. Therefore,
preventive maintenance is planned at the largest off-period during ¢ and ¢ + At units
of cumulative operating time (see Figure 5.2). In addition, corrective maintenance

actions are carried out upon failure.

To a certain extent, this approach is similar to the modelling framework suggested
by Berg (1984), in which the system is maintained preventively as soon as it reaches
age d > 0, or at the beginning of the first off-period at which its age exceeds w < d.
Nevertheless, our modelling framework is much stronger, since it chooses the largest
rather than the first off-period between ages w and d. If w = d, both policies coincide

with a classical age maintenance policy.

Our analysis now proceeds as follows. First of all, the time required for preventive
and corrective maintenance are modelled as random variables, with cumulative prob-
ability functions G, () and G(-) respectively. For notational convenience, we restrict
ourselves to the case where both on- and off-periods are mutually independent, ex-
ponentially distributed random variables, with means A™'and ! respectively. Our

analysis, however, could also be generalized to other than exponential distributions.



5.4. THE SECOND STAGE 123

OFF

OFF
] OFF
OFF N

\ 4
F 3
\ 4
F 3
\ 4
F 3

3
\ 4
F 3
A\ 4

F 3
- -

ON ON ON ON —‘ ON ON

> -

t+At

Figure 5.2: Preventive maintenance is planned at the largest off period.

The expected maintenance costs ¢; and ¢,(At)

As a starting point of our analysis, let us denote with Na; the number of off-periods
within an arbitrary interval of At units of cumulative operating time. Since the length
of each on-period is exponentially distributed with mean A™', it is obvious that Na,
follows a Poisson distribution with parameter A - At. For n > 0, this yields:

(A At)" - e MAL

P(NAt:n): n'

Now let Ya; denote the length of the largest off-period during an arbitrary interval
of At units of cumulative operating time. Given that Na, = n, Ya; will take a value
less than y > 0 if and only if each of the n independent off-periods takes a value less

than y. Hence, the conditional probability P(Ya; <y | Na; = n) is given by:
P(YAt S y | NAt = n) = (1 — e—u-y)n

Now define Ha(y) = P(Ya: < y) as the probability that the largest off-period
during an arbitrary interval of At units of cumulative operating time does not exceed
y units of time. With the definitions of Na; and Ya; in mind, this yields the following
expression for Ha(y) :

HAt(y) = ZP(YAt Sy;NAt:n) = ZP(YAt <y | NAt:n)'P(NAt:n)
n=0 n=0

o0
. AAp) e M A ZA At (1—e—HY “AAte—HY
:Z(l—e“y)”.( )n!e — o MAL L AAB(1-eTHY) XAt
n=0

First of all, we observe that Ho(y) = 1 for all y > 0, implying that the largest

off-period during an infinitely small interval equals zero with probability 1. This is
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consistent with our intuition. In a similar way, Ha.(0) = e VA

implies that the
largest off-period during an arbitrary interval of size At equals zero with probability
e~*At Tndeed, this corresponds to the probability that the length of a single on-period
exceeds the amount of At units of time. For notational convenience, let ha,(y) denote

the corresponding probability density function, and define Ha(y) = 1 — Ha.(y):
hAt(y) =A- M- At . e_N'y—A-At-e*u-y

Since failures can only occur during production (on-periods), the expected un-
availability time in case of a failure equals the expected corrective maintenance time.
This leaves us with the following expression for c;:

cp= /:r dGs(x)
0

In an analogous way, the following expression can be derived for ¢,(At), i.e. the
expected unavaililibity time associated with preventive maintenance at the largest

off-period during an arbitrary interval of At units of cumulative operating time:

e, x

¢ (At) = / 2 Has(0) + / (2 —y)  haely) dy +0 - Tac(z) b dG,(x)

0 0

The first term within curly brackets refers to the situation where no off-periods
occur during the entire maintenance interval. In the second term, the largest off-
period reduces the unavailability time to a smaller, but still positive value. The
third term describes the (zero) contribution due to the occurence of an off-period
longer than the time required for preventive maintenance. If we restrict ourselves to
constant preventive and corrective maintenance times ¢, < t;, these expressions for

cg and ¢,(At) can be further reduced to:

Cf:tf

tp

0

After some elementary algebra, it can be shown that ¢,(0) =1, < t; = ¢y, ¢,(At)
is decreasing in At, and lima,—.o ¢,(At) = 0. Moreover, it is at least intuitively clear
that preventive maintenance costs ¢,(At) will be reduced if A increases (shorter on-
periods) or u decreases (longer off-periods). On the other hand, if A and p increase
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Figure 5.3: Expected unavailability time ¢,(At) as a function of the interval length
At, for an on/off production system with constant preventive maintenance times
t, = 1, and different values for A and p.

or decrease with the same factor, and thus the occupation rate p = X_’i—u of the
production system remains unchanged, some interesting behavior can be observed.
A typical example of this behavior is depicted in Figure 5.3. If At tends too zero, large
values of A and p (i.e. frequent and short service interruptions) are to be preferred
above small values of A and p (i.e. infrequent and long service interruptions). For

large values of At, the opposite seems to be true.

Validation of the first stage model

Let us now examine whether the various assumptions that were made in our first
stage model are valid. As a starting point, it follows from the complete randomness
of Poisson processes (Heyman and Sobel 1982), that the location of the largest off-
period is uniformly distributed over [t,¢ + At], and that its length is independent of
its location. For similar reasons, we may as well assume that the system is restored
into a stationary state after each preventive and corrective maintenance action, since
the length of each on-period is an exponentially distributed random variable. In
other words, our first stage modelling assumptions are completely satisfied within
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this setting of exponentially distributed on- and off-periods. Nevertheless, this rea-
soning would also apply to other than exponentially distributed off-periods. On the
other hand, the assumption of exponentially distributed on-periods is essential for
the validation of our first stage modelling assumptions.

5.4.2 A queue-like production system

Let us now consider the case where the operating state X (-) of the production system
behaves according to a homogeneous continuous time Markov process on a finite
discrete state space, without loss of generality denoted as {0, ..., m}. Transitions occur
from state ¢ to state j # ¢ with rate ¢;; > 0. The system can be maintained at failure
against expected cost ky(i), and preventively against expected cost k,(i) < ky(7),
where ¢ denotes the operating state of the production system at the time maintenance
is carried out. Without loss of generality, we assume that k,(0) < ... < k,(m)
and k¢(0) < ... < kg(m). Note that k,(-) and k() may include direct as well as
indirect maintenance costs. A simple example of this type is a service station with
Poisson arrivals and exponentially distributed service times, in which indirect costs
are incurred due to extra waiting, causing delays in delivery. Here, m > 0 denotes

the storage capacity and 0 < ¢ < m the number of jobs in the system.

The expected maintenance costs ¢y and c,(At)

Without loss of generality, we assume that ¢ = 0 represents the start of the mainte-
nance interval, and introduce X, = X (¢) for notational convenience. As a starting
point of our analysis, we denote with Q = (g¢;;) the infinitesimal generator matrix of
X(+), where ¢; = — Z#i ¢ij- Moreover, we let Ya; = min{X; | 0 < ¢ < At} denote
the operating state X; of the production system at the best opportunity ¢ during the
interval [0, At], and define p;;x(t) as follows:

pijk(t) =P, =34, Xy =k | Xo=1)

In order to obtain these transition probabilities, it is sufficient to define a Markov
process {Z;,t > 0} as follows: {Z; = (4,7)} ~ {Y; = ¢,X; = j}. Obviously, this
yields the following alternative expression for p;j(t):

pigr(t) = P(Zy = (4, k) | Zo = (4,7))

It is now clear that Z(t) is a homogeneous continuous time Markov process on
a finite state space {(7,7) | 0 < ¢ < 7 < m}, as is shown more explicitly in Figure
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Figure 5.4: Transition diagram of Z(.) in case X(.) is a birth and death process on
state space {0, ...,m}, with transition rates A; (0 <7 <m) and p,; (0 <7 <m).

5.4. Hence, the conditional probabilities p;;x(¢) can be calculated both analytically
(Tijms 1994), and numerically (Trivedi 1982). Note that p;;jx(0) =1if ¢ = j =k, and
pijk(0) = 0 otherwise. Moreover, lim; o, pi;r(t) = 7 if j = 0, and lim;_,oo piji(t) =0
otherwise. Here, w = (mq, ..., T,,) with 3;m; = 1 denotes the vector of steady state
probabilities.

In order to arrive at an expression for ¢y and ¢,(At), we have to account for all
initial states ¢, all minimal states j <4, and all final states k > j, with corresponding
probabilities. Since X (-) is assumed to be restored into a stationary state after each
preventive and corrective maintenance action, this yields the following expressions
for ¢y and ¢, (At):

It is immediately clear that ¢,(At) is an analytic function, which decreases with
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At. Moreover, ¢,(0) = > . m; - ky(i) < >, mi-kp(i) = ¢p, and limag o0 ¢, (AL) = £, (0).
In the simplest case, ¢,(At) is a linear combination of exponential functions in At.

Validation of the first stage model

As a starting point, let us determine the probability P(X; = Ya;) that the minimal
state during the interval [0, At] is - amongst others - attained at time ¢, provided
that X (-) is in a stationary state at time 0. Then, similar to the previous section,
we have to account for all initial states ¢, all minimal states j < ¢, and all final
states k > j, with corresponding probabilities. This yields the following expression
for P(X: = Yar):

P(Xy=Ya) = Z ' Z”i - pijj(t) - piju(At — 1)

It can easily be derived that for m = 1, this leads to an expression which is
independent of . Unfortunately, this property cannot be translated into a uniform
distribution of the optimal starting time £ over the maintenance interval [0, At], since
the final choice among the set of candidate starting times {0 < t < At | X; = Ya;}
also depends on the selection strategy of the maintenance planner. But even if the
maintenance planner chooses randomly among these candidate starting times, £ would
still not be uniformly distributed over [0, At], see Appendix C for details. On the
other hand, if we restrict ourselves to reversible Markov processes, and thus {X;} is
stochastically identical to {X ;}, it is immediately clear that the expected starting
time for preventive maintenance equals E{t} = At/2. Moreover, ¢ is symmetrically
distributed around this value.

A simulation study

In order to verify our first stage modelling assumptions, we carried out a simulation
study for a queue-like production system with m = 1, kf(1) =4, ks(0) = k,(1) = 2,
and k,(0) = 1. After some elementary algebra, this yields the following expressions
for ¢y = 2'{1+F/\u} and ¢, (At) = 1+FAM-6_“'N, where we denote A = qo1 and 1 = g0
for notational convenience. In each simulation experiment, the optimal starting time
t € [t,t + At] for preventive maintenance was determined by choosing arbitrarily
among the set of candidate starting times. In addition, the operating state X(.) of
the production system was not restored to its stationary state after each preventive

and/or corrective maintenance action. The results are depicted as simulation (I) in
Table 5.2.
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Table 5.2: Optimal two-stage maintenance policies {t*, At*} with corresponding
costs h(t*, At*) for a queue-like production system with m = 1, k¢(1) = 4, ks (0) =
k,(1) = 2 and k,(0) = 1, in comparison with 95% confidence intervals for the actual

values based on simulation.

A 1 t* At* h(t*, At*) simulation I simulation IT
1 1 0.568 0.373 2.257 2.251 + 0.005 2.261 + 0.005
1 ot 0.609 0.278 1.725 1.764 + 0.004 1.730 £ 0.005
1 10 0.661 0.191 1.642 1.647 + 0.006 1.644 £ 0.003
o 1 0.500 0.474 2.672 2.428 £ 0.006 2.681 £ 0.007
5 5 0.499 0.386 1.936 1.933 £ 0.008 1.938 £+ 0.007
ot 10 0.574 0.266 1.767 1.773 £+ 0.006 1.772 + 0.006
10 1 0.488 0.491 2.764 2.552 £+ 0.006 2.772 £ 0.006
10 5) 0.464 0.414 2.024 2.014 £ 0.009 2.020 = 0.005
10 10 0.538 0.288 1.836 1.835 £ 0.006 1.836 £ 0.006

From the simulation results, we conclude that h(t*, At*) often comes close to the
actual value based on simulation. On the other hand, there is a significant difference
in each of the following cases: (i) A = 1 and p = 5, (ii)) A = 5 and p = 1, and
(i) A = 10 and p = 1.
most problems were caused by the assumption that X(.) is restored to a stationary

A closer look at the simulation results indicated that

state after each maintenance action. To this end, we carried out another simulation
study (IT) in which X (.) was restored to a stationary state after each preventive and
corrective maintenance action (see Table 5.2). Apparently, our two-stage maintenance
policy must be handled with care if this stationarity assumption becomes too criticial.
Simply stated, this means that the average sojourn times ‘qij 1} in each of the possible
states i € {0, ..., m} must be relatively small in comparison with the average life time
w1 of the production system.

5.5 Computational results

To investigate the potential benefits of a two-stage generalized age maintenance pol-
icy, in relation to a classical age maintenance policy, we carried out a series of nu-
merical experiments for a production system with Gamma distributed life times,
with mean p = 1 and standard deviation o € {0.25,0.50}. In each of these exper-
iments, the maintenance cost functions were determined by ¢; = 100 and ¢,(At) =
a+ B e VA where a € {10,25}, 8 € {5,10} and v € {1,2,5}. For each of the 24
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Figure 5.5: Optimal two-stage maintenance policies {t*,t* + At*} for a production
system with ¢; = 100, ¢,(At) = 25+ 10 - ¢ 72! and Gamma distributed life times
(n=1, 0 = 1), as a function of the shape parameter vy (At = 00).

test problems obtained this way, we determined the optimal age maintenance policy
to < oo with corresponding costs g(to), and the optimal two-stage maintenance policy
{t*, At*} with corresponding costs h(t*, At*). The results are depicted in Table 5.3.

As a starting point, we can see from Table 5.3 how the ratio of h(t*, At*) and g(to)
varies with «, 4 and v. In accordance with our general expectations, we observe that
the relative improvement of a two-stage generalized age maintenance policy, compared
with a classical age maintenance policy, increases with § and v, but decreases with
«. In a similar way, we can observe that the costs h(t*, At*) of the optimal two-stage

maintenance policy {t*, At*} increases with «, 8 and o, but decreases with ~.

Let us now take a closer look at the case ¢ = 0.25, a = 25 and 8 = 10, and further
investigate the behavior of ¢t* and At* in relation to v. If v — 0, the preventive
maintenance cost function converges to ¢,(At) = a+ § = 35 for all At > 0. In a
similar way, 7 — oo leads to ¢,(At) = a = 25 for At > 0, whereas ¢,(0) = a+ = 35.
In both cases, however, it follows from Theorem 2 that At* — 0. In other words, as
tends to zero or infinity, the optimal two-stage maintenance policy coincides with the

optimal age maintenance policy, i.e. t* — t5 and At* — 0. For intermediate values of
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Table 5.3: Optimal maintenance policies for a production system with Gamma
distributed life times with mean p = 1 and standard deviation ¢ € {0.25,0.50},
corrective maintenance costs ¢; = 100, and preventive maintenance costs c,(At) =
a+ B-e At for different values of o, a, 3 and v (At = 00).

o |a B | to gltg) | t* At* t*+ At h(t*, At*) | savings
0.50 | 25 10 10.721 86.4 | 0.440 0.525 0.965 83.7 3.2 %
0.50 [ 256 10 2| 0.721 86.4 | 0.390 0.551 0.941 80.9 6.4 %
0.50 | 25 10 5| 0.721 86.4 | 0.393 0.434 0.827 7.2 10.7 %
05025 5 10636 80.6 0485 0.293 0.778 79.7 1.2 %
05025 5 210636 &80.6 |0.436 0.368 0.804 78.4 2.8 %
050 25 5 50636 80.6 [0.424 0.339 0.763 76.2 5.5 %
0.50 | 10 10 1] 0.489 65.3 | 0.264 0.410 0.674 61.5 5.8 %
0.50 [ 10 10 2| 0.489 65.3 | 0.202 0.472 0.674 56.9 12.9 %
0.50 | 10 10 5| 0.489 65.3 | 0.192 0.399 0.591 50.0 23.4 %
0.50 | 10 5 10421 55.2 | 0.300 0.229 0.529 54.0 2.3 %
0.50 | 10 5 2| 0.421 55.2 | 0.247 0.311 0.558 51.9 6.1 %
0.50 | 10 5 50421 55.2 | 0.225 0.308 0.532 48.0 13.2 %
0.25 |25 10 1]0.686 60.3 | 0.553 0.240 0.793 58.8 2.6 %
02525 10 2|0.68 60.3 | 0.491 0.331 0.822 56.2 6.9 %
0.25 25 10 5| 0.686 60.3 | 0474 0.325 0.799 51.5 14.7 %
025125 5 10658 534 |0.588 0.132 0.720 53.0 0.9 %
02525 5 20658 534 | 0.544 0.206 0.750 52.0 2.7 %
02525 5 50658 534 |0.516 0.240 0.756 49.7 7.0 %
0.25 |10 10 1| 0.603 383 | 0.432 0.289 0.721 36.1 5.8 %
0.25 | 10 10 2| 0.603 38.3 | 0.337 0.407 0.744 32.5 15.2 %
0.25 | 10 10 5| 0.603 38.3 | 0.327 0.382 0.709 26.7 30.3 %
02510 5 110572 30.0 0477 0.170 0.647 29.3 2.4 %
0.25 |10 5 20572 30.0 | 0.414 0.262 0.676 279 7.0 %
02510 5 50572 30.0 [ 0.383 0.289 0.672 25.0 16.8 %
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Figure 5.6: Two-stage maintenance policies h(t, At) for a production system with
Gamma distributed life times (u =1, 0 = ), ¢y = 100 and ¢,(At) = 25+ 10 - e=>4%:
numerical optimization yields ¢, ~ 0.686 and ¢(ty) ~ 60.3, whereas t* ~ 0.474,
At* 2~ 0.325 and h(t*, At*) ~ 51.5.

7, different results are usually found (see Figure 5.5). An illustrative 3-dimensional
plot of h(t, At) in case v = 5 is presented in Figure 5.6. The optimal age maintenance
policy tg ~ 0.686 with costs g(ty) = 60.3 is clearly visible along the t-axis.

5.6 Concluding remarks

In this chapter, we presented a two-stage generalized age maintenance policy, which
more explicitly takes into account that (i) the initiation of preventive maintenance
should be based on the technical and operating state of a production system, and
(ii) this operating state is often known in advance over a finite rolling horizon in an
operational planning phase. We presented a variety of modelling and optimization
techniques, with which an optimal two-stage maintenance policy can be determined
to a sufficient, and user-defined level of detail. Based upon a series of numerical
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experiments, we concluded that significant savings can be obtained in comparison
with a classical age maintenance policy.

Presumably, one of the main problems in real-life situations will be to express
the expected preventive maintenance costs ¢,(At) as a function of the interval size
At. Similarly, it might be difficult to come up with the actual distribution of £ over
the maintenance interval [t,¢ + At]. On the other hand, since the majority of prac-
tical applications in the maintenance area is based on ambiguous data (e.g. expert
opinions, subjective data, fitted distributions), reasonable approximations should not
cause major problems. From a practical point of view, optimal maintenance policies
should always be handled with care; the two-stage maintenance policy is no exception
to this rule.

Of course, our two-stage maintenance concept could also be applied to other
maintenance models as well. For example, consider a classical block replacement
model (Barlow and Proschan 1965), in which preventive maintenance is carried out
as soon as t time units have elapsed since the last preventive maintenance action. In
other words, preventive maintenance is carried out at times {¢,2-¢,3-¢,...}. Within
our two-stage maintenance concept, this would mean that preventive maintenance is
carried out somewhere between times ¢ and At, somewhere between times 2 - ¢t and
2 -t + At, somewhere between times 3 -t and 3 - t + At, etcetera. In line with this,
the time between two consecutive preventive maintenance actions becomes a random

variable, whose probability density function ¢, A,(-) is determined as follows:

1 lu — t|
=— <1 - —— t—2-At<u<t+2-At
§0t7At(u) 2. At { 2At} ) Su<st+

Note that fir;ﬁf au) du=5-4-At-(2-At)1 =1forallt >0, At > 0.

Let us now denote with M (t) the expected cumulative deterioration costs (due to
failures, repairs, etc.), ¢ time units since the last preventive maintenance action. By
doing this, we can derive the following expression for the expected maintenance costs
per unit of time h(t, At) associated with a two-stage generalized block replacement

policy {t, At}. Here, we denote ¢(u) = ¢, (u) for notational convenience:

cp(AL) + t+7At¢("T:) - M(u) du

t—2-At
t

Under some weak conditions, i.e. if M (t) is strictly increasing and convex in ¢, it

h(t, At) =

is possible to formulate similar procedures to arrive at the optimal two-stage gener-
alized block replacement policy {t*, At*}. This and other possible model extensions,

however, are left for future research.
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5.7 Appendix

A Proof of Lemma 6

(a) Since f(u) = m(u)/ n( ) is assumed to be strictly positive and strictly increasing
in u, it follows that f u) du = f f(u)-n(u) du > f(a)- f n(u) du. Similarly,
it can be shown that f m(u) du < f(b ) f n(u) du. Obviously, dividing by
fa n(u) du yields the desired result.

(b) Since b = 0 is trivial, we have to show that g(a,b) = faa+b m(u) du/ fa+b ) du
is strictly increasing in @ > 0 for all b > 0. As a starting point, observe that
(a) implies that f(a) < g(a,b) < f(a+b). Let us now derive an expression for
g(a+ h,b), where h — 0:

a+bth a-+b
S m(u)du [ m(u) du+h-m(a+b) —h-mla)
a+h a
g(a +h, b) - aj—_b-i-h ~ a+b
[ n(u) du [ n(u) du+h-n(a+b) —h-n(a)
a+h a
a+b

g(a,b)- [ n(u) du+h- fla+b) -n(a+b) —h- f(a)-n(a)

a

af n(u) du+h-n(a+b) —h-n(a)

(f(a+b) —g(a,b) -nla+b) +(9(a,b) = f(a)) - n(a)
[ n(z) de+h-n(a+b) —h-n(a)

a

= g(a,b)+h-

It is clear that this yields the following expression for dg(a, b)/da:

glathb)—glad) _ (flatb) —glab) -nlatb) + (glah) = o)) -nfa)
h—0 h a+b
[ n(x) dx

Since f(a+b) > g(a,b), n(a+b) > 0, g(a,b) > f(a), and n(a) > 0, it follows that
dg(a,b)/da > 0 for all @ > 0, and thus g(a,b) is strictly increasing in a > 0 for all
b>0.

(c) The proof is similar to (b).
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B Analytical expressions for ¢g(¢) and h(t, At)

The underlying observation behind these explicit formulas for g(t) and h(t, At), is
that the following relations can be derived in case of Gamma distributed life times,

with cumulative distribution function ', (.), mean u = a3, and variance o2 = a- 3%

t

/ Pog(u) du =t - Tos(t) — @ - B Tasrs(t)

0

t

1
/ w-Tap(w) du=5 £ Tapt) = (@ +0a®) - B Taras(t)
0

C Distribution of 7 over [0, At]

For simplicity, and for notational convenience as well, we consider the case m = 1
with transition rates go; = g0 = ¢ > 0. As a starting point, let us denote with
N, the number of jumps of the process X (-) during the interval [0,¢], and elaborate
upon the conditional probabilities P(f <t | Na, = n), with n € N. Since the
maintenance planner chooses randomly among the set of candidate starting times
{0 <t <At | X; = Ya}, it is immediately clear that t is uniformly distributed over

[0, At], given that no jumps occur during this interval:

- t
P(t§t|NAt:0):E

On the other hand, we have to account for all feasible realizations of X(-), in order
to arrive at the averages relevant for P(f <t | Na; = 1). To this end, let us denote
with p;(7) the probability density that Xy = ¢ and the only jump during [0, At] occurs

at time 7. Then obviously, P(f <t, Nar = 1) can be expressed as follows:

t At t
t—T

~ t
P(tgt,NAtzl):/pO(T)'ldT—f—/po(T)';dT+/p1(T)'At_TdT

0 t 0

Within this setting, it is easily derived that po(7) = pi(7) = 3 - ¢ - 742" for all
7 € [0, At]. Now substitution of these expressions in P(f < t, Na, = 1), and dividing
by P(Na; = 1), yields a non-uniform distribution of £ over [0, At], provided that

exactly one jump occurs during this interval:

t+3-t-In {8} +3-(At—t) In {8
At

Pt <t|Na=1)=
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Following a similar argument, it can be shown that ¢ is uniformly distributed over
[0, At], provided that exactly two jumps occur during this interval. Based on explicit
relations for n = 1...7, which were determined with the use of Maple, the following

limiting behavior was observed:

( L n=0,24,6,.. )
P(i <t|Na=n)=1{ L. Lhdeht L o@2logs) n=1 ’
\ ~ - =+ O(t*logt) n=3,5,7,..

Since P(Na; = n) > 0 for all n € N by definition, and P(f < t) = P(f > At —t)
for all 0 < t < At, we conclude that ¢ is not uniformly distributed over [0, At], and
even has singularities in t = 0 and ¢ = At of logarithmic type.
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Chapter 6

Maintenance meets production at KLM
Royal Dutch Airlines

In order to encounter some actual interactions between production and
maintenance in a practical context, a case study has been carried out at the
Line Maintenance department of KLM Royal Dutch Airlines. This department
is responsible for the inspection, maintenance and repair of aircrafts during
their stay at Schiphol Airport, as well as the assignment of aircrafts to flights
within KLM’s timetable. A decision support system has been developed with
which maintenance managers are better equiped to determine how many main-
tenance slots of which type should be available in the timetable, and how many
maintenance engineers of which type should be assigned to these slots, in order
to satisfy the overall service levels set by higher management. The main objec-
tive of this study was to develop some fundamental and elementary queueing
models, which could eventually assist maintenance managers in the formulation

of several design criteria for KLM’s timetables.

6.1 Introduction

KLM Royal Dutch Airlines has been the major Dutch airline since 1919. KLLM’s home
base is Schiphol Airport nearby Amsterdam. Currently (1997), KLM owns about 90
aircrafts of 8 different types, which operate flights to and from about 150 cities in
80 countries. Traditionally, the safety of passengers and crew has had top priority
in KLM’s mission statement. Therefore, KLLM carries out high-quality maintenance,
relying on approximately 3000 employees in its overall maintenance department. To
be specific, each aircraft is maintained preventively through major and minor inspec-
tions, and correctively during its stay at Schiphol Airport. Major inspections are
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Table 6.1: Major inspection intervals for the intercontinental fleet.

inspection # weeks # flights # flight hours
A check 6 150 650
C check 18 1.300 7.500
D check 72 5.200 25.000

performed in KLM’s hangars after a certain amount of time, flights and/or flight
hours, and their underlying structure is completely equivalent to the indirect cluster-
ing approach presented in chapter 3.

Minor inspections are conducted in between each arrival and departure at Schiphol
Airport, and include a variety of so-called arrival, platform and departure services
(Dijkstra et al. 1994). Amongst several other activities, arrival services consist of
fixing ground power supply, compiling a list of technical complaints based on the
crew’s flight records, and collecting resources (e.g. mobile cranes and scaffoldings)
for the platform services. Furthermore, platform services consist of checking the
technical state of the aircraft, and performing repairs whenever necessary. Finally,
departure services consist of a final technical check of the aircraft. In this chapter, we

are mainly concerned with platform services, and performing repairs in particular.

These repair activities are carried out by employees of the Line Maintenance de-
partment. Currently, its workforce consists of approximately 250 highly-skilled and
well-trained maintenance engineers. Their responsibility is to inspect, maintain, and
repair KLM’s aircrafts during their stay at Schiphol Airport. Due to internal and
external safety rules, each maintenance engineer is licensed to carry out inspections
on a limited number of aircraft types, and also has a specific skill for avionic resp. me-
chanical systems. The engineers obtain their licenses and skills by attending training
programs consisting of theoretical and practical courses. Depending on their experi-

ence, it takes several months to several years to complete such a training program.

In general, the time required for arrival and departure services can be treated
as a given constant, depending on the aircraft type. For similar reasons, the time
required for preventive maintenance activities (platform check) is more or less fixed.
The remaining period of ground time can be used for planned and/or unplanned
corrective maintenance activities (i.e. performing repairs). It is determined by the
difference between arrival and departure time of the aircraft under consideration,
minus the required time for arrival services, departure services and platform checks.
As such, this length can be derived from the underlying timetable operated by KLM
Royal Dutch Airlines, in combination with the assignment of aircrafts to flights within
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Figure 6.1: General structure of KLLM’s timetables.

this timetable. The latter decisions are also the responsibility of the Line Maintenance

department.

Simply stated, KLM’s timetable consists of a comprehensive collection of so-
called city-city pairs with scheduled departure and arrival times, and corresponding
aircraft type. Typically, this timetable follows a cyclical pattern, with a cycle length
of exactly one week. On an average day, some clearly distinguishable peaks can be
observed, caused by KLM’s marketing strategy to minimize waiting times for tran-
sit passengers (connecting flights). Several times a day, a batch of intercontinental
flights arrives at Schiphol Airport followed by a batch of continental flights to sev-
eral destinations allover Europe, and vice versa (see Figure 6.1). In this study, we
focus on the intercontinental fleet, which is mainly operated by the following aircraft
types: Boeing 747-300 Combi (B743C), Boeing 747-300 Full Pax (B743P), Boeing
747-400 Combi (B744C), and Boeing 747-400 Full Pax (B744P). For a variety of
technical, economical and operational reasons, these aircraft types are not mutually
interchangeable, i.e. each aircraft type operates its own timetable.

The times between arrival and departure of KLM’s aircrafts at Schiphol Airport
are called ground times or slots. During these slots, several activities have to
take place inside and outside the aircraft (e.g. cleaning, fueling, catering, boarding,
etcetera), which usually take up to two hours on average. In the meanwhile, a post-
and pre-flight inspection is conducted by specialized maintenance engineers. The
remaining ground time is available for the elimination of (deferred) defects i.e. per-
forming repairs. As a consequence, the minimal turn around time (i.e. if no corrective
maintenance activities are carried out) equals approximately two hours, at least for
the intercontinental fleet. On the other hand, the maximum allowed time for an air-
craft to stay at its gate is restricted by Schiphol Airport, and equals approximately
four hours. In that case, the aircraft must be transported to and from a buffer, each
of which takes another half an hour on average. In view of efficiency, it is therefore
important to incorporate as few as possible ground times between say 4 and 6 hours
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Figure 6.2: Maximum utilization for different ground times (slots) at Schiphol Air-

port, in terms of the fraction of available time that can be used for repair activities.

in the design of a timetable (see Figure 6.2). It was one of the main objectives of this

study to provide maintenance managers with decision support in this respect.

Of course, the possibilities to keep the technical state of the aircrafts within the
constraints set by higher management, are strongly related to the time that is reserved
for the elimination of (deferred) defects. In this respect, it is not only the total
amount of ground time (quantity), but also the relative frequencies of different slot
types (quality) that counts. This effect is even stronger if one realizes that different
defects may require different repair times (e.g. 3, 6 or 12 hours) and capacity (e.g.
1, 2 or 3 maintenance engineers), and may carry different due dates (e.g. 3, 10 or 30
days) as well. Another complicating factor in this respect is that each defect refers to
a so-called maintenance log (aircraft vs. cabine) and maintenance skill (avionics
vs. mechanics), which must be treated separately. In addition, technical no-go’s
i.e. defects that must be repaired before departure (zero due date) deserve special
attention.

From a maintenance point of view, the timetable should provide enough opportu-
nities to eliminate each defect before its due date, and within the amount of time and
capacity that is available. On the other hand, such a timetable could never be opti-
mal from an overall KLM perspective, since this would strongly reduce the number
of scheduled flights, which is of particular commercial interest. Hence, the possibil-
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ity of deferred defects, technical delays and cancellations is essential and inevitable
in the design of KLM’s timetables. In line with this, the performance of the Line
Maintenance department is expressed in, and continuously monitored by two main
elements. These are the technical dispatch dispunctuality (TDD), and the deferred
defect list (DDL). In the remainder of this chapter, we will present some fundamental
and elementary queueing models, which could provide maintenance managers with
reasonable predictions and/or indicators of these performance measures at a strate-

gical and tactical planning level.

The technical dispatch dispunctuality corresponds to the percentage of air-
crafts that does not leave on time due to technical problems. In general, technical
delays are due to deferred defects which cannot be repaired in time, and technical
no-go’s in particular. Depending on the aircraft type, a small amount of delay is
usually allowed (15 minutes for the intercontinental fleet, 5 minutes for the continen-
tal fleet). Currently, the service level for KLM’s technical dispatch dispunctuality
is determined at a maximum of 4% for Schiphol Airport, and 2% world-wide. The
deferred defect list corresponds to the collection of all reported defects that have
not been eliminated yet, e.g. due to lack of time, capacity, spare parts and/or infor-
mation. In this respect, a clear distinction is made between defects that are reported
in the aircraft maintenance log (AML), and defects that are reported in the cabine
maintenance log (CML). At the time this study was conducted, the service level for
KLM’s deferred defect list was determined at a maximum of 4 AML and 3 CML

deferred defects per aircraft on average.

In the past few years, the maintenance department has used a tool called critical
flight analysis, in order to determine the feasibility of a timetable with respect to
the technical dispatch dispunctuality. So far, this tool has performed reasonably, and
there is no specific reason for dramatic changes. Therefore, we will mainly focus on
the accumulated workload associated with deferred defects. This does not necessarily
mean, however, that there is no mutual relationship between these performance mea-
sures. After all, an increase in the number of deferred defects usually goes together
with an increase in due date violations. In a similar way, an increase in due date
violations implies an increase in technical delays and/or cancellations, and as such
affects the technical dispatch dispunctuality.

The outline of this chapter is as follows. In section 6.2, we present a more detailed
description of the problem under consideration, and discuss some related issues as
well. Subsequently, a short introduction into our newly developed decision support
system will be given in section 6.3, and we discuss the role of the underlying queueing
models in some more detail. In section 6.4, we present a so-called time-based mod-
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elling framework, which is mainly concerned with finding a proper match between
large defects and large maintenance slots. In a similar way, section 6.5 comprises a so-
called capacity-based modelling framework, which can assist maintenance managers
in finding a proper match between overall workload and workforce, both expressed
in man hours. In section 6.6, the results of our study are summarized, and some
interesting opportunities for related research problems are discussed.

6.2 Problem description

Since the introduction of the 3-wave system a few years ago, and the more recent intro-
duction of the SCORE (Schiphol COnnection REdesign) system (Bootsma 1997), the
ground times at Schiphol Airport have been under constant pressure. In the past few
years, this has resulted in a different workload for the Line Maintenance department,
which on its turn has resulted in an increase of technical dispatch dispunctuality and
deferred defects. At the same time, the goals of KLM’s maintenance department are
to increase punctuality, to decrease ground times, to reduce the number of deferred
defects, and to raise productivity.

Under this pressure, the managers main problem is to find a good match between
workload and workforce, all against reasonable costs in terms of the associated time
and /or capacity. The elements that play a significant, if not crucial role in this match
are timetables, failure rates and capacity profiles (see Figure 6.3). In the following
section, these factors will be addressed in more detail. Here, we only mention that the
quality of such a match is mainly determined by the number of deferred defects,
and the number of due date violations. Too many due date violations may lead to
unacceptable problems in an operational planning phase, in terms of delays and/or
cancellations, and must therefore be controlled at a strategical and/or tactical level.
In a similar way, too much deferred defects may result in poor aircraft quality, which
is in conflict with the overall company objective to provide high quality service to its
customers.

Planning for a good match of workload and workforce is therefore important, and
it involves both strategical, tactical and operational planning issues. At the strategi-
cal level, management has to formulate a variety of design criteria, in order to arrive
at a concept timetable (draft) which can be realized against reasonable costs, and
within the constraints set. At the tactical level, management has to identify and solve
(potential) problem areas within the draft, followed by a rough cut capacity planning
for the maintenance department, in terms of the required number and type of main-
tenance engineers. At the operational level, management has to decide which aircraft
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Figure 6.3: Crucial factors in the match between workload and workforce.

should operate which flight, and which maintenance activities should be carried out
by which maintenance engineers during the resulting ground times. In this study, we
focus at strategical and tactical planning issues, which means that the actual timing
of maintenance slots in the timetable are not contained in our analysis. To be specific,
the following decision problems are adressed:

e how many maintenance slots of which type must be available in the timetable?

e how many maintenance engineers of which type must be assigned to these slots?

Although the relative frequencies of different slot types are strongly related to
the underlying structure of KLLM’s timetable, these figures can only be derived in an
operational planning phase. After all, it depends on the day-to-day assignment of
aircrafts to flight numbers, which slot types will actually be observed in practice, and
with which relative frequencies (see Figure 6.4). At a strategical and tactical level,
one often uses a last-in-first-out type of service discipline (LIFO) in order to derive
the (expected) relative frequencies of different slot types within the timetable. By
doing so, they usually overestimate the number of large slots, and underestimate the
number of small slots.

The other way around, a first-in-first-out type of service discipline (FTFO) would
normally underestimate the number of large slots, and overestimate the number of
small slots. Throughout this study, we will assume that the relative frequencies of
different slot types, as requested in the design of a timetable, can be realized in an
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Figure 6.4: The relative frequencies of different slot types depend on the day-to-day

assigment of aircrafts to flights within the timetable.

operational planning phase. In the newly developed SCORE system, the differences
between both methods are in fact quite small, since most intercontinental flights
arrive and depart in batches (see Figure 6.1). The reader is referred to Bootsma

(1997) for a more detailed discussion on the structure of KLM’s timetables.

Traditionally, major and minor inspections are planned in advance, and have
never caused severe planning problems. On the contrary, defects are unplannable,
and their stochastic nature goes together with fluctuations in the amount of workload
offered to the maintenance department. Obviously, this phenomenon undermines the
objective of eliminating each deferred defect before its due date, and within the
required amount of ground time. Before we started this study, the managers based
their design criteria with respect to the timetable merely on experience and intuition.
Mathematical models were only based on long run averages, thereby neglecting the
randomness of such events completely, e.g. see Owusu and Jessurun (1993) and
Van der Eijck (1995). As a consequence, management could not evaluate or foresee
potential problems associated with a (conceptual) timetable to a sufficient level of
detail.

In the past few years, and in accordance with the second performance criterion,
management has mainly been focussed on reducing the number of deferred defects.
Therefore, small defects have usually received top priority in the operational plan-
ning and scheduling of maintenance activities. Simply stated, this priority setting
strategy is based on the well-known shortest-processing-time (SPT) first service dis-

cipline (Silver et al. 1998), which aims at minimizing the average waiting time per
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Table 6.2: Average repair times of deferred defects: 99% confidence intervals ex-
pressed in minutes (Van der Eijck, 1995).

B743C B743P B744C BT744P
Aircraft Maintenance Log 84 + 10 78 £ 8 87+ 9 83 + 11
Cabine Maintenance Log 35 +£3 37+ 4 36 £ 3 38 £4

defect. In line with this idea, large slots have often been used for the elimination
of multiple small defects, rather than a few larger ones. Obviously, this cannot be
the right planning strategy, since opportunities for large defects are scarce, whereas
opportunities for small defects are (relatively) numerous. Throughout this study, we
decided to reformulate the second performance criterion in terms of the workload
associated with deferred defects, rather than the number of deferred defects itself.
In our view, this alternative performance criterion would lead to an important
change in KLM’s attitude towards corrective maintenance planning, and would even-
tually increase the overall performance of KLM Royal Dutch Airlines. At least, it
served as a starting point for our analysis. Based on the average processing times
of deferred defects within the intercontinental fleet (see Table 6.2), we proposed the
following target levels: approximately 5 AML and 2 CML deferred man hours per

aircraft on average.

6.3 Decision support system

In view of the addressed problem areas, the management of KLLM’s maintenance de-
partment had the impression that the quality of decision making could be improved
by the introduction of a decision support system. Simply stated, the decision support
system that we developed consists of four main elements, viz. a timetable module,
a workload module, a workforce module, and an analysis module. With this deci-
sion support system, maintenance managers are better equiped to determine how
many maintenance slots of which type should be available in the timetable, and how
much capacity of which type should be assigned to these slots, in order to fulfil the
overall company objectives within the constraints set by higher management. In the
remainder of this section, a brief description of each module will be given.

As a starting point, the timetable module contains several fundamental char-
acteristics of KLM’s timetable for a specific aircraft type. These are (i) the number
of aircrafts, (ii) the average number of flights per aircraft per day, (iii) the average
number of flight hours per flight, (iv) the average number of flights per cycle, and (v)
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the relative frequencies of different slot types. Here, a cycle is defined as a subsequent
departure from and arrival at Schiphol Airport. This is an important quantity, since
the majority of defects - the larges ones in particular - can only be tackled at Schiphol
Airport, and not at so-called outbound stations. In general, most cycles consist of
two flights, i.e. to and from a specific destination. Nevertheless, cycles of three or
even more flights do also occur in practice, especially in the intercontinental fleet.

Secondly, the workload module contains the arrival rates of defects per flight
and per flight hour, thereby making a clear distinction between different categories in
terms of (i) the underlying maintenance log, (ii) the corresponding maintenance skill,
(iii) the required repair time and capacity, and (iv) the associated due date. The
underlying observation behind these so-called failure rates is that some deterioration
processes are flight dependent (e.g. motors, engines), some are flight-hour dependent
(e.g. chairs, lights), and some are a combination of both. Nevertheless, a preliminary
study by Van der Eijck (1995) pointed out that the majority of failures, at least
in terms of the associated workload, is flight-dependent. Eventually, a database
module should be incorporated, which keeps track of all flights, flight hours, and
defects in the intercontinental fleet. By doing this, it might become possible to
determine the above-mentioned failure rates automatically, e.g. by using a multiple
regression technique (Dunn and Clark 1974).

Finally, the workforce module determines how much maintenance engineers of
which type (avionics and/or mechanics) should be assigned to each type of slot in
the timetable. By doing this, the user can investigate the consequences of different
capacity profiles at a strategical planning level (e.g. high capacity on large slots and
low capacity on small slots, or vice versa). From now on, a complete set of figures
concerning data on the timetable, data on the workload, and data on the workforce, is
called a scenario. The analysis module provides the user with extensive possibilities
for analyzing different scenarios. It consists of routines which estimate the workload
and workforce per week, and evaluate the quality of the match between workload and
workforce. In the following sections, these routines will be addressed in more detail,
as well as the underlying queueing models and assumptions. Here, we only mention

that a clear distinction has been made with respect to time and capacity.

Simply stated, the timetable must provide enough time (large slots) in order
to cope with large defects, and enough capacity (manhours) in order to cope with
all defects. In line with this idea, we have developed a separate time-based and
capacity-based modelling framework, in order to define the quality of the match
between workload and workforce. The basic underlying motivation behind each mod-
elling framework is that workload accumulates until the arrival of workforce, but
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Figure 6.5: Scenario analysis via implicit and explicit information flows.

workforce cannot accumulate until the arrival of workload. Since these arrivals take
place according to complex (stochastic) processes, the existence of deferred defects,
and thus the possibility of due date violations, is inevitable. In line with this idea,
management is primarily interested in the average amount of deferred workload, as
well as the probability of due date violation for different types of defects. The analysis
module provides reasonable estimates and/or indicators for these and other perfor-

mance measures within a given scenario.

With this decision support system, it is of course also possible to compare different
scenarios with each other in a strategical planning phase. In fact, and as long as our
models have not been verified with actual data, this is exactly what our decision
support system should be used, and was designed for. More specifically, our model
outcomes for a specific scenario should be handled with care if interpreted explicitly,
but may provide useful implicit information in relation to other model outcomes for
other scenarios (see Figure 6.5).

From a practical point of view, this means that our models could be used to assist
maintenance managers with comparative studies into alternative timetables. This is
a potentially valuable insight, since there is still little on-the-job experience with our
decision support system, and validation and/or modification of our models is yet to
come. Nevertheless, we believe that they contain some interesting features, which
are worth mentioning here. In the following sections, we will briefly describe the
underlying queueing models and assumptions for our time-based and capacity-based

modelling framework.
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6.4 Time-based modelling framework

As a starting point, the time-based modelling framework is concerned with finding
a proper match between large defects on the one hand, and large maintenance slots
on the other hand. Since large slots should primarily be used for large defects, and
as such should be treated with the highest priority, we assume that there is always
enough manpower available to eliminate large defects. Therefore, the main ingre-
dients of our time-based modelling framework are the complex stochastic processes

associated with the arrivals of large defects and large slots.

6.4.1 Input and output specifications

As a starting point, the arrival rates of large defects are derived from the data provided
by the timetable and workload modules, thereby making a clear distinction between
different categories in terms of the required maintenance slot and the corresponding
due date. In accordance with current KLM practices, we used 4 categories for large
slots (>24 hours, 16-24 hours, 12-16 hours and 6-12 hours) and 4 categories for due
dates (<1 day, 1-3 days, 3-10 days, and 10-120 days). Recall that maintenance slots
of less than 6 hours can hardly be used efficiently, especially for large defects (see
Figure 6.2). Nevertheless, our modelling framework could easily be generalized to
cope with more (or less) categories.

As a next step, the average number of large slots per week is calculated from
the data specified in the timetable module, again for each of the above-mentioned
categories. Based upon these figures, the decision support system provides the user
with reasonable estimates of the average waiting times for different types of defects,
as well as the corresponding probabilities of due date violation. Subsequently, it
determines a reasonable estimate of the average number of due date violations per
week, which obviously is a useful performance indicator in view of comparing different

scenarios with each other.

6.4.2 Model and assumptions

As we explained before, due dates are categorized into m different types, and main-
tenance slots into n different types. With d; and ¢;, we denote the typical or average
due date and slot size associated with type ¢ resp. type 7. For notational convenience,
and without loss of generality, we assume that d; < ... < d,, and t; > ... > t,. To
continue our analysis, we denote with \;; the arrival rate of type (i,7) defects, i.e.

defects with a due date of type i, that require a slot of type j. In a similar way,
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Figure 6.6: General structure of the time-based modelling framework

we let 1; denote the arrival rate of type j slots. Finally, 7; reflects the probability
that a slot of type 7 cannot be used for planned maintenance, e.g. due to a technical
no-go or other causes. Currently, and in line with the above-mentioned modelling
framework, KLM operates m = 4 different due date types, and n = 4 different slot
types (see Figure 6.6).

Since there is no specific information available about the actual timing of large
maintenance slots within the timetable, our modelling framework is based on the
assumption that large defects and large slots arrive according to mutually independent
Poisson processes. For similar reasons, we assume that each maintenance slot can be
used for the elimination of at most one single defect. The question now remains which
defect should be assigned to which maintenance slot. In general, this assignment
should be based on the duration of the slot, and the due date of each defect. Since
large defects should receive top priority, we adopted the following (approximate)
priority rule at this strategical/tactical level: amongst all defects with the largest but
still appropiate slot type, select the one with the lowest due date type. For example,
a type 3 slot (12-16 hours) examines the collection of deferred defects in the following
sequence: (1,3) — (2,3) — (3,3) — (4,3) — (1,4) — (2,4) — (3,4) — (4,4).

Our analysis now proceeds as follows. As a starting point, we denote with A\; =
A11 + ... + A1 the arrival rate of defects that require a slot of type 1, and with
fi; = iy -1 the arrival rate of such slots. By doing this, the waiting time of type (i, 1)

defects is equivalent to the sojourn time in a single-server preemptive priority queue,
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with exponentially distributed interarrival and service times for each priority class,
in which the service of a lower priority job is interrupted as soon as a higher priority
job enters the system. According to White and Christie (1958), this means that the
following expression can be derived for the first two moments E{W;;} and E{W3

of the waiting time W, for type (i, 1) defects. Here, we denote p,; = A\i1/fi; < 1 and

i = Y P < 1 for notational convenience:

k<i
1 1
EWit=—" — —
Wk = o T (=
92 1 0i 11
Wil = e T e 0w =6 (1 —dn)

Let us now take a closer look at defects of type (i,2), i.e. defects which require
a slot of type 1 or 2. Since slots of type 1 are primarily used for type (i,1) defects,
it is easily verified that the arrival rate of these slots for type (i,2) defects equals
fis = ji, - (1 = py) + pg - ma, where py = pyy + ... &+ Py = M/fiy. Clearly, the first
term refers to slots of type 1 which are not used for type (i,1) defects, whereas
the second terms refers to slots of type 2. Our analysis now proceeds by assuming
that the waiting time of type (i,2) defects can also be modelled as the sojourn time
in a single-server preemptive priority queue. Of course, this reasoning can only hold
approximately, since the arrival process of type 1 slots for type 2 defects is no Poisson
process in general. In an analagous way, we can now approximate the first two
moments E{W;y} and E{W3} of the waiting time W, for type (i,2) defects. Again,

we denote P, = A\io/fis < 1 and &2 = Y P < 1 for notational convenience:
k<i

1 1
E{Wp} =—" — —
{Wea} fro (1 —=3Gi12) - (1—0i)

) 2 1 0i-12
BWa} = T {(1 —Gi-1,2)” - (L= 032)? e Gi12)®- (11— 5i2)}

For j > 2, similar results can be obtained. Further details are skipped, since
they are not so relevant for what follows. Our analysis is now based on the ap-
proximate reasoning that the waiting time W;; of type (i,j) defects is a Gamma
distributed random variable, with known parameters a;; = E{W;;}?/Var{W;;} and
Bi; = Var{Wi;}/E{W;;}, where Var{W;;} = E{W3 } — E{Wj; }*. Summarizing, this
leaves us with the following approximation for the probability of due date violation
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Table 6.3: A comparitive study of 9 scenarios within the time-based modelling
framework: average probability of due date violation per defect, in relation to the

relative frequencies of different slot types (numerical example based on imaginary
data).

slot type I II 111 I\ A\ VI VII  VIII IX
>24 hours 2 % 2 % 2 % 2 % 4% 4% 4% 4% 6%
16-24 hours 2 % 2% 2% 4% 4% 4% 4% 6% 6%
12-16 hours 4 % 4 % 6 % 6% 6% 6% 8% 8% 8%
6-12 hours 8 % 0% 10% 10% 10% 12% 12% 12% 12%
% too late 375 % 260 % 172% 11.1% 71 % 67% 59% 49% 3.6 %

for type (7, j) defects. Here, I'y g(.) denotes the cumulative distribution function of a

Gamma distributed random variable with mean « - 8 and variance a - 8%

Together with the arrival rates \;; of type (4, ) defects, this comes down to an
arrival rate D, s Aij- P{Wi; > d;} of due date violations. In our view, this value could
be of considerable interest in comparing different scenarios at a strategical planning
level, in view of the match between large slots and large defects. Eventually, the
management of KLLM’s maintenance department could set a treshold value, based on
historical data and expert opinions. Moreover, they could use this time-based mod-
elling framework in the identification of potential problem areas within a timetable,
by taking a closer look at P{W;; > d,;} and/or X;; - P{W;; > d;} for all i, j.

6.4.3 Numerical example

To illustrate our newly developed time-based modelling framework, we evaluated 9
different scenarios for the relative frequencies of different slot types in one of KLM’s
timetables. The results of this scenario analysis are depicted in Table 6.3. As we
expected, the percentage of large defects which cannot be repaired before their due
date, is strongly related to the relative frequencies of different slot types. For example,
a closer look at scenarios I and VII indicates that the number of due date violations
is reduced with a factor 6, if the number of large maintenance slots is increased
with a factor 2. Obviously, such figures might provide maintenance managers with

potentially valuable quantitative insights, which were previously not available.



152 CHAPTER 6. CASE STUDY AT KLM ROYAL DuTCH AIRLINES

6.5 Capacity-based modelling framework

Our capacity-based modelling framework is concerned with finding a proper match
between workload and workforce in terms of manhours. In this respect, a clear dis-
tinction must be made between released and unreleased workload. Simply stated,
released workload refers to deferred defects that are waiting to be scheduled, whereas
unreleased workload consists of deferred defects that cannot be scheduled yet (see
Figure 6.7). In general, the existence of unreleased workload is due to e.g. lack of in-
formation, equipment and/or materials, whereas released workload is mainly caused
by lack of time and/or capacity. Obviously, the unreleased workload cannot be re-
duced by providing more time and/or capacity in the timetable, since these defects
are due to external factors. This is a potentially valuable insight, which is further

exploited in our model.

6.5.1 Input and output specifications

First of all, information must be available with respect to the average workload
per cycle expressed in man hours, thereby making a clear distinction between the
required maintenance skill (avionics/mechanics) and the corresponding maintenance
log (aircraft/cabine). Subsequently, the user must provide the relative frequencies of
different slot types in the timetable, as well as the capacity in terms of the number
of avionic and/or mechanic maintenance engineers that are assigned to these slots.
Finally, the user must specify how much time it takes (on average) for a defect to
become part of the released workload, the so-called external lead time. In addition,
the user can specify the minimal turn around time and maximal gate time, which
determine the relation between ground time and available repair time (see Figure
6.2). Based upon these figures, the decision support system provides the user with
an estimate of the average number of deferred man hours, for the aircraft maintenance

log as well as the cabine maintenance log.

6.5.2 Model and assumptions

As a starting point of our analysis, and in accordance with our time-based modelling
framework, we assume that the arrival of defects can be modelled as a homogeneous
Poisson process. In order to determine the average amount of unreleased workload,
it is now completely natural to assume that there is no correlation between the
external lead times of different defects. By doing so, the unreleased workload can be
modelled as a M/G /oo queue. Using Little’s formula, it is easily verified that the
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Figure 6.7: General structure of the capacity-based modelling framework

average unreleased workload equals A/p, where A denotes the mean arrival rate of
workload (e.g. 20 manhours per day), and 1/u denotes the average external lead time
(e.g. 1 day).

Our model for released workload is now based on the assumption that there is no
correlation between the workload and workforce per cycle. In other words, workload
and workforce are modelled as mutually independent stochastic processes, one that
degrades resp. one that upgrades the technical state of the aircraft. More specifically,
the workload and workforce per cycle are modelled as independent stochastic variables
Y and Z respectively, with known distribution functions. Within this setting, it is
immediately clear that the deferred workload X just before departure must satisfy
the following balance equation. Here, we define x|t = max{0,z} for notational

convenience:
X=[X+Y-Z]"

This equation is known as Lindley’s equation (Lindley 1952), for which explicit
solutions are not readily available. Nevertheless, explicit solutions can be found for
M|G|1 and G|M|1 queueing models, see e.g. Heyman and Sobel (1982). More specifi-
cally, P(X < z) and thus E{X} can be determined analytically, if Y is exponentially
distributed with mean 1/ pu:

(07

PX <z —l—q-etvla s prxyv - —
(X <) =

Here, 0 < o < 1 is the unique solution to z = Z(u - (1 — x)), where Z(.) denotes
the Laplace-Stieltjes transformation of G(.), and G(z) = P(Z < z) denotes the
cumulative distribution function of the workforce per cycle:
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o]

Z(s) = E{e "%} = / T dG(z :/g )-e % dz

0

The question remains how to determine g(z). To this end, recall that the user
must define a collection of different slot types, as well as the relative frequencies of
occurence, and the capacities assigned to these slots. The decision support system
converts these figures into a finite set of m different workforce classes [a;, b;], expressed
in manhours, with relative frequencies of occurence p;. To achieve this, it uses the
data with respect to minimal turn around time and maximal gate time (e.g. 2 resp.
4 hours in Figure 6.2). Subsequently, and in line with the above, we can define g(z)
rather straightforwardly as follows:

o Di
g(Z)— b — ay

1ia; <z<b;

With this in mind, we can easily derive an analytical expression for Z(s). As a
consequence, « can be determined numerically to a sufficient level of detail, using
standard search techniques:

s-b;

:/g(z)- ”dz—Z/b — e ¥F dz— sz 8::2
0

Of course, the outcomes of our models will strongly overestimate the actual values
observed in practice. First of all, and in order to arrive at an analytical expression for
E{X}, we modelled the workforce per cycle as an exponential distribution, whereas
a Poisson or normal distribution would certainly be more realistic. Secondly, the
workload per cycle Y and the workforce per cycle Z were modelled as mutually
independent random variables, and we can probably do much better in practice. In
our decision support system, this has been accounted for by multiplying our model
outcomes with a correction factor, such that the predicted values would correspond
with reality. Unfortunately, and due to lack of information and available time, we
have not been able to come up with a properly validated estimation of this correction
factor. So far, we have used a rough impression of this correction factor instead.
Nevertheless, our model was still considered as a useful tool for comparing different
scenarios for slot type distributions and capacity profiles.
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Table 6.4: A comparitive study of 7 different scenarios within the capacity-based
modelling framework: average slot length, ground time, and deferred workload, in
relation to the relative frequencies of different slot types (numerical example based

on imaginary data).

slot type I II 111 1A% A\ VI VII
24-32 hours 5% 4 % 4% 4 % 4 % 4 % 10 %
16-24 hours 5% 4 % 4 % 4 % 4 % 10 % 4 %
12-16 hours 5% 4 % 4% 4 % 10 % 4 % 4 %
6-12 hours 10 % 9% 9% 15 % 9% 9% 9%

4-6 hours 25 % 24 % 30 % 24 % 24 % 24 % 24 %

2-4 hours 50 % 55 % 49 % 49 % 49 % 49 % 49 %
slot length 6.75 6.14 6.26 6.50 6.80 7.16 7.64
ground time 4.25 3.69 3.75 3.99 4.29 4.65 5.13

unreleased AML 1.46 1.46 1.46 1.46 1.46 1.46 1.46
released AML 3.50 5.08 4.85 3.49 3.05 2.88 2.82
total AML 4.96 6.54 6.31 4.95 4.51 4.34 4.27
unreleased CML 0.68 0.68 0.68 0.68 0.68 0.68 0.68
released CML 1.63 2.37 2.26 1.63 1.42 1.34 1.31
total CML 2.31 3.05 2.94 2.31 2.10 2.03 2.00

6.5.3 Numerical example

To illustrate our newly developed capacity-based modelling framework, we evaluated
7 different scenarios for the relative frequencies of different slot types in one of KLM’s
timetables. In each scenario, the numbers of avionic resp. mechanic maintenance en-
gineers assigned to each slot type were fixed. The results of this scenario analysis are
depicted in Table 6.4. As we expected, an increase in the average length of mainte-
nance slots usually goes together with a decrease in (released) deferred workload. On
the other hand, a closer look at scenarios I and IV shows that it is also possible to
improve the performance in this respect, while at the same time reducing the average
length of maintenance slots. The underlying reasoning behind this counter-intuitive
behavior is that - once again - frequent and short interruptions of the production
process are to be preferred above infrequent and long ones, all other things being
equal. Since maintenance slots of 2-6 hours can hardly be used efficiently (see Figure
6.2), this means that the relative frequency of 6-12 hour maintenance slots should
be increased. This explains the attractiveness of scenario IV in relation to all other

scenarios.
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6.6 Concluding remarks

Of course, the decision support system that we developed is still far from providing
absolute answers to relevant questions. After all, we made a lot of assumptions in
order to arrive at explicit formulas for a variety of useful performance indicators,
and verification and/or modification of these models and assumptions is yet to come.
Nevertheless, we believe that our decision support system contains some interesting
elements, with which maintenance managers are better equiped to determine how
many slots of which type must be available in the timetable, and how many mainte-
nance engineers must be assigned to these slots. In addition, our models could also

be used to provide valuable support in each of the following dimensions:

the impact of new time table structures,

the effect of aircraft fleet derioration,

the influences of due date adjustments,

the benefits of external lead time reductions.

Summarizing, the decision support system provides the management of KLM’s
Line Maintenance department with information that was previously not available.
It increases their insight into various strategical and tactical problems that must
be solved within the maintenance department. On the other hand, we should keep
in mind that the results obtained with our decision support system are based on
approximate modelling techniques, and as such must be handled with care. Therefore,
the user of our decision support system must judge the practical value of the model
outcomes in light of considerations that were not explicitly accounted for.

To conclude this chapter, let us now briefly discuss the need for a decision support
system at the operational planning level. Simply stated, the maintenance department
must decide (i) which aircrafts should operate which flights, (ii) which capacity should
be assigned to the resulting ground times, and (iii) which defects should be eliminated
with this capacity. In general, these decisions relate to each other in a very complex
manner. Moreover, they are restricted by several additional constraints, either eco-
nomical, technological, combinatorial and/or political. In this respect, there is a
hugh potential of interesting research problems at the operational level, which could
lead to an improved on-line decision support system for KLM’s Line Maintenance

department.
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Chapter 7

Towards a decision support system for
coordinated planning and scheduling of

production and maintenance

In this thesis, we have presented a variety of interesting mathematical mod-
els, which could be used to assist in, or at least provide insight into the op-
timization of preventive maintenance policies for complex systems. In each of
these models, we haven taken into account possible interactions with produc-
tion in several dimensions. In this last chapter, we will briefly summarize the
ideas and models presented in this thesis. In addition, we will indicate some in-
teresting opportunities for further research in view of a decision support system

for coordinated planning and scheduling of production and maintenance.

7.1 Conclusions of this thesis

Let us start with a brief summary of the ideas and models presented in this thesis. As
a starting point, we developed a mathematical framework with which the times and /or
costs associated with preventive and/or corrective maintenance can be modelled to
a proper level of detail. The main underlying observation behind this modelling
framework was that most production systems can be decomposed hierarchically into
a tree-like structure of set-up activities and components. Since different components
may require one or more shared set-up activities, there was a perspective of significant
gains if maintenance activities were carried out simultaneously. In chapter 1, we
concluded that a clear distinction between static, dynamic grouping and opportunistic
grouping strategies was necessary. Moreover, we had to distinghuish between time-

based, use-based, condition-based and failure-based maintenance strategies.
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Within this modelling framework, the possibilities for static grouping (clustering)
of preventive maintenance activities were further exploited in chapters 2 and 3 of this
thesis. In chapter 2, we considered a direct clustering problem for multi-setup multi-
component production systems with frequency-constrained maintenance jobs. Here,
our objective was to subdivide a collection of maintenance jobs into several mainte-
nance packages, such that overall preventive maintenance costs per unit of time were
minimized. In chapter 3, we examined a somewhat similar but indirect clustering
problem, in which the frequency constraints were replaced by frequency-dependent
costs, and each component was maintained preventively at integer multiples of a
certain basis interval. This time, our objective was to determine a repetitive mainte-
nance cycle which minimizes the long run average maintenance costs per unit of time.
Based upon a series of numerical experiments, we concluded that static maintenance

grouping is a powerful instrument to improve efficiency in terms of set-up avoidance.

Subsequently, chapter 4 was concerned with the interval availability distribution
of an unreliable production system, which is maintained preventively at regular in-
tervals, and correctively upon failure. Within this setting, we examined the effect
of preventive maintenance policies on the guaranteed performance of a production
system during a finite period of time, rather than its average performance in the
long run. Based upon a variety of numerical experiments, we concluded that the
variability of a production system is often a more appropriate performance measure
than its availability, which is commonly used in maintenance optimization models.
This provided us with a potentially valuable insight. After all, random breakdowns
are one of the most disrupte sources of variability in practice, and as such can be
reduced by effective maintenance strategies.

In chapter 5, we investigated the potential benefits of building in some flexibility
concerning the starting time of preventive maintenance in an operational planning
phase. The underlying observation behind this approach was that the initiation of
preventive maintenance should be based on the technical state as well as the operating
state of a production system, and that the latter is often subject to fluctuations in
time. A two-stage maintenance policy was considered, which - in a first stage - used
the technical state of the production system to determine a finite interval during
which preventive maintenance must be carried out, and - in a second stage - used
the operating state of the production system to determine the optimal starting time
within that interval. Computational results indicated that significant savings could

be obtained in comparison with classical maintenance strategies.

Finally, chapter 6 comprised the results of a case study that was carried out at
the Line Maintenance department of KLM Royal Dutch Airlines. This department is
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responsible for the inspection, maintenance and repair of aircrafts during their stay
at Schiphol Airport, as well as the assignment of aircrafts to flights within KLM’s
timetable. A decision support system was developed which should eventually assist
maintenance managers in determining how many maintenance slots of which type
should be available in the timetable, and how many maintenance engineers of which
type should be assigned to these slots, in order to comply with the service levels
set by higher management. The main complicating factors in this respect were the
variation and uncertainty associated with corrective maintenance jobs.

Summarizing, the ideas and models presented in this thesis have addressed a
variety of interesting problem areas, in view of the possible interactions between
production and maintenance. In our opinion, these problem areas could provide the
basis for the design of a decision support system for the coordinated planning and
scheduling of production and maintenance. In view of the development of such a
decision support system, the main conclusions of this thesis can be summarized as
follows:

e in modelling the times and/or costs associated with preventive and/or corrective
maintenance, the tree-like structure of set-up activities and components pro-
vides a powerful compromise between the theoretical complications and practi-

cal limitations of maintenance grouping problems;

e in defining the objective of mathematical models for maintenance optimization,
one should remember that the guaranteed capacity of a production system
during a finite period of time is often a more appropriate performance measure

than its average production capacity in the long run;

e in formulating optimal maintenance strategies for unreliable production sys-
tems, there is a perspective of significant reductions in both maintenance times
and costs, if some kind of flexibility is build in concerning the starting time of

preventive maintenance in an operational planning phase;

e in constructing a schedule of production jobs with intermediate maintenance
slots, one should explicitly account for the variations and uncertainties asso-
ciated with corrective maintenance jobs, in terms of the underlying arrival

processes, repair times, and due dates.

In the remainder of this chapter, we will briefly discuss several functionalities of a
decision support system for coordinated planning and scheduling of production and
maintenance, in view of these and other considerations. Moreover, we will discuss

some interesting opportunities for further research as well.
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7.2 A framework for design

In order to arrive at a decision support system for coordinated planning and schedul-
ing of production and maintenance, it is in our view essential to maximally exploit the
opportunities for static grouping, dynamic grouping and opportunistic grouping. In
addition, we should account for time-based, use-based, condition-based and failure-
based maintenance policies as well. On the other hand, it is virtually impossible to
support the underlying decision problems with mathematical models in each planning
phase. In our opinion, preventive maintenance frequencies should be determined at
a strategical level, whereas tactical and operational decision making should be sup-
ported with relatively simple, and rather straightforward control mechanisms. At
the very least, these control mechanisms should facilitate the possibilities for mutual
interactions with production planning and scheduling.

In this respect, and in line with our newly developed two-stage maintenance policy,
it is completely natural to provide each maintenance activity and/or maintenance
package with a release and due date in a tactical and operational planning phase.
In our view, this elementary concept is fundamental for the notion of coordinated
planning and scheduling of production and maintenance activities. By doing this,
preventive maintenance is no longer a prescheduled event for production planning
and scheduling, that causes lower machine capacity, but is also a production need
that needs to be managed together with production jobs. The other way around,
separate planning and scheduling processes for production and maintenance require
some compromise to ensure mutual compatibility, thereby involving the risk of sub-
optimization.

Although this concept of release and due dates for maintenance activities is com-
mon sense in many practical situations, it certainly is an underexposed point of view
in existing literature. A typical example of this type was found at the Royal Dutch
Airforce, where it is decided at a strategical level that F16’s must undergo overhaul
maintenance somewhere between 190 and 210 flight hours, but final decisions are
made in an operational planning phase. The main underlying justification for the
introduction of release and due dates, or so-called maintenance windows, is that
small deviations from the optimal maintenance interval usually involve low incremen-

tal costs, but provide significantly more flexibility in each of the following dimensions:
e workload balancing;
e dynamic and opportunistic grouping;

e coordination with production planning and scheduling.
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Figure 7.1: Long term, medium term and short term maintenance planning in view

of a decision support system for coordinated planning of production and maintenance.

At the very least, a decision support system for coordinated planning and schedul-
ing of production and maintenance should provide the functionalities to define static
maintenance packages and maintenance windows in a strategical planning phase.
Ideally, it should also be able to evaluate the consequences of user-made decisions in
several dimensions (e.g. costs, availability and/or variability), and to suggest alterna-
tive solutions on request. Moreover, it should be able to assist maintenance managers
in the construction of dynamic and opportunistic maintenance packages in a tactical
and operational planning phase, as soon as more detailed information about the tech-
nical and operating state of the production equipment becomes available (see Figure
7.1). In this respect, the definition of static maintenance packages and corresponding
maintenance windows plays an important, if not crucial role in the context of such a
decision support system, since it provides the constraints for further decision support
systems and accompanying mathematical models at lower planning levels.

Obviously, the mutual relationships between static, dynamic and opportunistic

maintenance packages and maintenance windows at different planning levels can be-
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come quite complicated. Therefore, the potential benefits of mathematical decision
support models are beyond any doubt. In this thesis, a variety of interesting modelling
tools have been presented, each or a combination of which could be very useful within
the above-mentioned functionalities of such a decision support system. Nevertheless,
there is still a hugh potential of interesting problem areas at each planning level,
which have not been addressed at all in this thesis. In the remainder of this chapter,
we will briefly discuss some interesting problem areas, and several opportunities for

decision support models as well.

7.3 Suggestions for further research

To conclude this thesis, we will elaborate upon some interesting opportunities for
further research in view of a decision support system for coordinated planning and
scheduling of production and maintenance. To structure this discussion, a clear dis-
tinction will be made between long term, medium term and short term maintenance
planning, since each of them requires completely different control mechanisms, and

accompanying decision support models as well.

7.3.1 Long term maintenance planning

In the long term, a decision support system should assist maintenance managers in
the definition of preventive maintenance packages (static grouping) and associated
maintenance windows (see Figure 7.2). Ideally, it should also be able to evaluate
the consequences of user-made decisions, and to suggest alternative solutions on re-
quest. Interesting performance criteria in this respect are e.g. the long run average
maintenance costs per unit of time, as well as the availability and variability of the
underlying production equipment. In order to arrive at reasonable estimates of such
performance measures, it is of crucial importance to have some kind of information
with respect to the failure behavior of different components. In the remainder of this
chapter, we will assume that such data are available. Further details are skipped,
since they are not so relevant for what follows.

In view of long run average performance criteria, it might be optimal to create a
few large maintenance packages, in order to minimize the overall times and/or costs
associated with preventive and /or corrective maintenance. The other way around, if it
is the short term behavior of a production system that counts, one could prefer a large
number of relatively small maintenance packages, such that the resulting workload

pattern can be evenly distributed over time. The underlying observation behind
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Figure 7.2: Long term preventive maintenance planning: definition of static main-
tenance packages with time-based, use-based and/or condition-based maintenance

windows.

this reasoning is that the variability of a production system does not only relate to
the uncertainties associated with corrective maintenance, but also to the variations
arising from preventive maintenance activities. Following a similar argument, the
construction of maintenance windows for maintenance packages is also a complex
issue, with several conflicting objectives as well. In this respect, there is a potential of
interesting problem areas at this strategical planning level, which could be supported
with mathematical models.

Another important aspect is that maintenance packages should be defined in such
a way that they can easily be incorporated in production plans and schedules in a
tactical /operational planning phase. In a setting of scheduled production jobs with
intermediate maintenance slots, it is therefore important that the time required for
static maintenance packages and corrective maintenance jobs, is in agreement with
the available maintenance slots in the production schedule. Complicating factors
in this respect are the variations and uncertainties associated with corrective main-
tenance, in terms of the underlying arrival processes, repair times, and due dates.
Therefore, some mutual coordination must take place in the construction of produc-

tion schedules, static maintenance packages, and maintenance windows.
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Although each of the models presented in this thesis contains some interesting
elements in view of these and other considerations, there is a lack of decision support
models which combine these issues into a more comprehensive modelling framework.
As an illustrative example, and in view of the ideas and models presented in this the-
sis, it might be worthwile to examine the interval availability distribution of a multi-
setup multi-component production system, in which each component is maintained
preventively at an integer multiple of a certain basis interval, and some flexibility is

build in concerning the starting time of preventive maintenance as well.

7.3.2 Medium term maintenance planning

In the medium term, a decision support system should assist maintenance managers
in the construction of dynamic maintenance packages, each of which is a combination
of static maintenance packages and/or corrective maintenance jobs. At this planning
level, this means that all use-based and condition-based maintenance windows must
first be converted into time-based maintenance windows, in order to be comparable
and compatible, and also to facilitate the coordination with production planning and
scheduling. If some kind of information is available with respect to the expected
utilization of the production equipment in the near future, as well as the expected
deterioration processes of the components under consideration, this can usually be
done in a rather straightforward manner.

Now that each static maintenance package is provided with a time-based main-
tenance window, or equivalently with a release and due date, it is the objective of
medium term maintenance planning to decide which static maintenance packages and
corrective maintenance jobs must be combined with each other, in order to arrive at
dynamic maintenance packages with corresponding maintenance windows (see Figure
7.3). A complicating factor in this respect is how to determine the maintenance win-
dow for a dynamic maintenance package. If the processing times of the underlying
maintenance packages and jobs are relatively small and can as well be neglected, this
can be done rather straightforwardly by taking the latest of all release dates, and the
earliest of all due dates. In all other cases, the time window of a dynamic mainte-
nance package formally depends on the sequencing of the underlying activities. For
example, a worst-case or best-case scenario could be used.

Nevertheless, it is immediately clear from these observations that there is another
potential of conflicting objectives at this tactical planning level. Simply stated, the
construction of relatively large dynamic maintenance packages may be preferred from
an efficiency point of view, but at the same time imply a decrease in the size of
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Figure 7.3: Medium term preventive maintenance planning: construction of dy-

namic maintenance packages with time-based maintenance windows.

the corresponding maintenance windows. On its turn, this might eventually lead
to significantly less flexibility in an operational planning phase, and thus lead to
unexpected inefficiencies after all. The other way around, creating a large number of
relatively small dynamic maintenance packages may provide enough flexibility, but
at the same time be inattractive from an efficiency point of view. Once again, finding
the right balance between times, costs and/or flexibility is an interesting problem

area, which could be supported with mathematical models.

An illustrative example of this type of maintenance planning was presented by
Wildeman, Dekker, and Smit (1997), who developed a modelling framework for the
dynamic grouping of preventive maintenance activities. Within this modelling frame-
work, the release and due dates for preventive maintenance activities are replaced with
a penalty cost for each maintenance activity, which is derived from the discrepancy
between its actual and optimal starting time. Nevertheless, the basic underlying con-
cepts are the same, and provide some interesting opportunities for generalizations in
several directions. As a starting point, it would be interesting to replace the penalty
cost functions with release and due dates for each maintenance activity. Moreover, we
could incorporate the hierarchical tree-like structure of multiple interrelated set-up
activities and components, in order to arrive at a more realistic cost structure. Fi-
nally, it might also be worthwile to build in some additional restrictions with respect

to the size of feasible maintenance packages, in view of the possibilities for mutual
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coordination with production planning and scheduling in an operational planning
phase.

7.3.3 Short term maintenance planning

In the short term, a decision support system should assist maintenance managers in
the coordinated scheduling of production jobs and dynamic maintenance packages.
At this planning level, production jobs and maintenance packages should be treated
on an equal basis, with an open eye for their mutual interactions. In this respect,
due date violations for maintenance packages should be handled with the same care
as those for production jobs. After all, maintenance should no longer be seen as
a necesarry evil, but as a production need that should be managed together with
production. Simply stated, it is the objective of short term maintenance planning to
arrive at an integrated schedule of production and maintenance activities, in which
all release and due dates are satisfied (see Figure 7.4). Of course, it depends on the
quality of long term and medium term decision making, whether and up to which
degree this objective can be realized in an operational planning phase.

Another important aspect of short term maintenance planning is the optimal
use of so-called maintenance opportunities, which may occur due to e.g. idle times,
machine failures and/or withdrawn orders. In general, these opportunities cannot
be predicted in advance, and are of restricted duration as well. As a result of this,
maintenance management often fails to make effective use of them. Therefore, a
decision support system should assist maintenance managers in compiling a list of
executable dynamic maintenance packages on request, and by setting priorities for
each dynamic maintenance package as well. Within this setting, the main questions
are how to define the priority of a maintenance package, and how to decide which
maintenance packages should be assigned to a maintenance opportunity. Once again,
mathematical models might be useful to support such decision making.

An illustrative example of this type of maintenance planning was presented by
Dekker and Smeitink (1994), who developed a decision support system for preven-
tive maintenance planning at opportunities of restricted duration. They consider
a somewhat similar modelling framework, which does not make use of predefined
maintenance windows. As an alternative, they incorporate these release and due
dates implicitly in their priority setting procedure. Subsequently, they provide the
user with an interactive knapsack scheduling problem, which determines an optimal
selection of maintenance packages given the time constraints. Once again, it would be

interesting to incorporate our complex structure of multiple interrelated set-up activ-
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dynamic maintenance packages within predefined time windows.

ities and components into such a modelling framework. Obviously, this would leave
us with a much more complex optimization problem, which has not been addressed

so far in existing literature.

7.4 Final remarks

Summarizing, the ideas and models presented in this thesis have covered a variety of
interesting problem areas, which are related to the interactions between production
and maintenance in several dimensions. As such, they have provided us with useful
insights that were previously not available. Nevertheless, there is still a lot of work to
be done in order to arrive at an adequate, model-based decision support system for
coordinated planning and scheduling of production and maintenance. In this thesis,
maintenance has met production, and some cross-fertilisation has taken place. Now
they got to know each other, it is time for them to develop a more intense relationship.

Of course, we’ll stay in touch.
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Summary in Dutch

Nog niet zo lang geleden werd het onderhoud van produktiemiddelen als een noodza-
kelijk kwaad beschouwd, en waren de meeste onderhoudswerkzaamheden correctief
van aard. Tegenwoordig wordt meer waarde gehecht aan de continuiteit van produc-
tieprocessen, en wordt het strategisch belang van onderhoud algemeen onderkend.
Als gevolg hiervan hebben preventieve onderhoudsconcepten aan populariteit gewon-
nen. Simpel gezegd zijn deze er op gericht onderdelen te vervangen voordat ze kapot
gaan. Teveel preventief onderhoud is daarentegen ook weer niet verstandig. Het
vakgebied onderhoudsmanagement houdt zich dan ook hoofdzakelijk bezig met de
vraag welke onderhoudswerkzaamheden wanneer en op welke wijze moeten worden
uitgevoerd, teneinde de totale onderhoudskosten te minimaliseren. Dit proefschrift

vormt hierop geen uitzondering.

Bij het ontwerp van een onderhoudsconcept dienen niet alleen de directe onder-
houdskosten, maar ook de aan onderhoud gerelateerde indirecte kosten a.g.v. produc-
tiestilstand te worden meegenomen. Hoewel indirecte kosten in het algemeen minder
goed zichtbaar, laat staan kwantificeerbaar zijn, vormen ze dikwijls het merendeel van
de totale kosten. Zo beschouwd spelen de interacties tussen onderhoud en produc-
tie een belangrijker rol dan veelal wordt verondersteld. Naast kostenoverwegingen,
kunnen immers ook de beschikbaarheid, de betrouwbaarheid en de beheersbaarheid
van de productiemiddelen van doorslaggevende betekenis zijn. Met beheersbaarheid
wordt hier bedoeld: de mate waarin voorspeld kan worden wanneer de productiemid-
delen beschikbaar (up) danwel niet beschikbaar (down) zijn. Eén van de grootste
voordelen van preventief ten opzichte van correctief onderhoud, is dan ook dat de er-
aan verbonden werkzaamheden ruim van tevoren, en op voor de productie geschikte
momenten kunnen worden ingepland.

In dit proefschrift worden een aantal tot de verbeelding sprekende wiskundige
modellen ontwikkeld, die ondersteuning kunnen bieden bij het bepalen van de juiste
verhouding tussen preventief en correctief onderhoud. In het bijzonder richten we
ons hierbij op de zojuist beschreven aspecten, namelijk: kosten, beschikbaarheid,

betrouwbaarheid en beheersbaarheid. Om voor de hand liggende redenen, ontwikke-
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len we allereerst een krachtig raamwerk waarbinnen de tijd en/of kosten die gepaard
gaan met het uitvoeren van preventieve en/of correctieve onderhoudswerkzaamheden
tot op een hoog detailniveau kunnen worden gemodelleerd. Hiertoe decomponeren
we een productiesysteem op een hierarchische wijze in subsystemen, componenten,
onderdelen, etcetera, totdat uiteindelijk een boomstructuur ontstaat met onderling

gerelateerde set-up en onderhoudsactiviteiten.

Binnen dit raamwerk ontwikkelen we in hoofdstuk 2 een methode om een verza-
meling preventieve onderhoudswerkzaamheden onder te verdelen in een aantal on-
derling onafhankelijke, disjuncte onderhoudspakketten. We beperken ons hierbij tot
onderhoudswerkzaamheden waarvan de frequentie reeds bij voorbaat is opgelegd, bij-
voorbeeld uit veiligheidsoverwegingen, maar eventueel vaker uitvoeren natuurlijk is
toegestaan. Vervolgens proberen we een zodanige onderverdeling te construeren, dat
de gemiddelde preventieve onderhoudskosten per tijdseenheid geminimaliseerd wor-
den. We proberen hierbij een balans te vinden tussen de extra kosten die verbonden
zijn aan het vaker dan nodig uitvoeren van bepaalde onderhoudswerkzaamheden, en

de besparingen in set-up kosten die gepaard gaan met het gelijktijdig uitvoeren ervan.

In hoofdstuk 3 beschouwen we een hieraan gerelateerde, maar fundamenteel ver-
schillende methode voor het op elkaar afstemmen van preventieve onderhoudswerk-
zaamheden. Ditmaal wordt iedere onderhoudsactiviteit uitgevoerd op een geheeltallig
veelvoud van een zeker basisinterval, en worden onderhoudspakketten op een dy-
namische manier geconstrueerd. Bovendien worden de correctieve onderhoudskosten,
die weer afhangen van de frequentie waarmee preventieve onderhoudsactiviteiten wor-
den uitgevoerd, expliciet meegenomen in de modellering. Vervolgens proberen we de
hieruit voortvloeiende onderhoudscyclus zodanig in te richten, dat de gemiddelde pre-

ventieve en correctieve onderhoudskosten per tijdseenheid geminimaliseerd worden.

In hoofdstuk 4 onderzoeken we de beschikbaarheid en beheersbaarheid van een
storingsgevoelig productiesysteem. Klassieke onderhoudsmodellen bepalen doorgaans
een optimale onderhoudsfrequentie, door de gemiddelde beschikbaarheid op lange
termijn te maximaliseren. We laten zien dat een dergelijke methode tot verre van
optimale oplossingen kan leiden, indien we geinteresseerd zijn in de gegarandeerde
beschikbaarheid op korte termijn (beheersbaarheid). Hiertoe ontwikkelen we een
wiskundig model waarmee we - bij een gegeven onderhoudsstrategie - kunnen bereke-
nen met welke kans het productiesysteem op zijn minst gedurende een bepaald per-
centage in een bepaalde periode operationeel zal zijn. Met behulp van een aan-
tal experimenten tonen we vervolgens aan dat de preventieve onderhoudsfrequentie
aanzienlijk zal toenemen, indien de korte termijn beheersbaarheid van het produc-

tiesysteem van groter belang wordt geacht dan de lange termijn beschikbaarheid.
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In hoofdstuk 5 beschouwen we een productiesysteem dat niet volcontinu, maar
slechts met tussenpozen in gebruik is. In een dergelijke situatie geldt natuurlijk dat
preventief onderhoud bij voorkeur dient plaats te vinden gedurende periodes dat het
productiesysteem niet door productie wordt opgegist, danwel voor onderhoud beschik-
baar is. Aangezien zulke informatie omtrent de productiebehoeftes doorgaans pas op
korte termijn bekend is, concluderen we dat het wel eens verstandig kan zijn om
een zekere mate van speling mee te geven aan het feitelijke tijdstip waarop preven-
tief onderhoud moet worden uitgevoerd. Vervolgens ontwikkelen we een wiskundig
model waarmee de optimale preventieve onderhoudsstrategie van dit type kan worden
berekend. Aan de hand van een aantal eenvoudige voorbeelden blijkt vervolgens dat
deze strategie sterk samenhangt met de karakteristieken van het productieproces.

In hoofdstuk 6 bespreken we de resultaten van een opdracht die is uitgevoerd bij de
afdeling Line Maintenance (lijnonderhoud) van de Koninklijke Luchtvaart Maatschap-
pij (KLM). Deze afdeling is verantwoordelijk voor het inspecteren, onderhouden en
repareren van vliegtuigen gedurende hun verblijf op de luchthaven Schiphol, alsmede
het toewijzen van vliegtuigen aan vluchten in KLM’s vluchtschema. Het voornaam-
ste doel van deze opdracht was om kwantitatief inzicht te verschaffen in de onder-
linge relaties tussen de dienstregeling, de onderhoudsvraag, en het onderhoudsaanbod.
Dit leidde uiteindelijk tot een decision support systeem, waarmee aan de hand van
een aantal fundamentele wachtrijmodellen kan worden bepaald hoeveel grondtijd van
welk type er in de dienstregeling moet worden opgenomen, en hoeveel personeel van
welke type aan deze grondtijden moet worden toegekend. Doelstelling hierbij was het
merendeel van de klachten te kunnen verhelpen, met inachtneming van de hiervoor
gestelde normen ten aanzien van minimale grondtijd en maximale doorlooptijd.

Tenslotte wordt in hoofdstuk 7 een overzicht gegeven van de in dit proefschrift
verworven inzichten, en worden een aantal mogelijkheden voor verder onderzoek in
kaart gebracht. Verder wordt in grote lijnen aangegeven hoe de reeds ontwikkelde, en
eventueel nog te ontwikkelen modellen, zouden kunnen worden ondergebracht in een
decision support systeem voor onderhoudsmanagement, waarin meer rekening wordt
gehouden met de eisen en wensen van productie. Ter verduidelijking wordt hiertoe een
onderscheid gemaakt in drie aggregatieniveaus, nl. de lange, de middellange, en de
korte termijn. Vervolgens wordt globaal aangegeven in welke facetten interacties met
productie op deze verschillende aggregatieniveaus naar voren komen. Aan de hand

hiervan worden een aantal mogelijke richtingen voor vervolgonderzoek aangedragen.
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